Ending spam : Bayesian content filtering and the art of statistical language classification /
Ending Spam describes, in-depth, how statistical filtering is being used by next-generation spam filters to identify and filter unwanted email. Readers gain a complete understanding of the mathematical approaches used in today's spam filters, decoding, tokenization, the use of various algorithm...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Francisco :
No Starch Press,
2005.
|
Edición: | 1st ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- An introduction to spam filtering concepts
- The history of spam
- Historical approaches to fighting spam
- Next generation filtering
- Shining examples of filtering
- Machine learning concepts
- Fundamentals of statistical filtering
- Statistical filtering fundamentals
- Decoding: uncombobulating messages
- Tokenization: the building blocks of spam
- Open source, OSX, and Milk Duds
- The low-down dirty details of spam
- Data storage for a zillion records
- Scaling for large-scale environments
- Advanced concepts of statistical filtering
- Concept identification: advanced tokenization
- Testing theory
- Fifth-order Markovian discrimination
- Concept identification: advanced tokenization
- Intelligent feature set reduction
- Collaborative algorithms
- Installing and using open source filters.