Cargando…

Advances in learning theory : methods, models and applications /

This text details advances in learning theory that relate to problems studied in neural networks, machine learning, mathematics and statistics.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: NATO Advanced Study Institute on Learning Theory and Practice Louvain, Belgium
Otros Autores: Suykens, Johan A. K.
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Amsterdam ; Washington, DC : Tokyo : IOS Press ; Ohmsha, ©2003.
Colección:NATO science series. Computer and systems sciences ; v. 190.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions.