Cargando…

Nearest-neighbor methods in learning and vision : theory and practice /

Regression and classification methods based on similarity of the input to stored examples have not been widely used in applications involving very large sets of high-dimensional data. Recent advances in computational geometry and machine learning, however, may alleviate the problems in using these m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Shakhnarovich, Gregory, Darrell, Trevor, Indyk, Piotr
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2005.
Colección:Neural information processing series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 EBOOKCENTRAL_ocm68907209
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 060516s2005 maua obs 101 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d YDXCP  |d OCLCQ  |d N$T  |d IDEBK  |d UAB  |d COCUF  |d OCLCE  |d OCLCQ  |d CCO  |d E7B  |d DKDLA  |d U5D  |d NNM  |d FVL  |d B24X7  |d OCLCQ  |d KIJ  |d OCLCQ  |d IEEEE  |d OCLCF  |d OCLCO  |d OCLCQ  |d COO  |d OCL  |d OCLCO  |d EBLCP  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AZK  |d OCLCO  |d JBG  |d AGLDB  |d OCLCQ  |d TOA  |d OCLCQ  |d MOR  |d PIFBR  |d ZCU  |d OTZ  |d LIV  |d MERUC  |d ESU  |d OCLCQ  |d NJR  |d OCLCO  |d WY@  |d OCLCO  |d U3W  |d OCLCA  |d OCLCQ  |d LUE  |d OCLCO  |d BRL  |d OCLCO  |d STF  |d GILDS  |d WRM  |d VNS  |d OCLCQ  |d VTS  |d MERER  |d OCLCQ  |d ICG  |d CUY  |d OCLCQ  |d INT  |d VT2  |d AU@  |d OCLCQ  |d OCLCO  |d WYU  |d MITPR  |d REC  |d OCLCQ  |d A6Q  |d DKC  |d OCLCQ  |d OCLCO  |d M8D  |d OCLCO  |d OL$  |d OCLCQ  |d OCLCA  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCA  |d OCLCQ  |d UKCRE  |d VLY  |d BRF  |d UKUOP  |d OCLCO  |d S2H  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBA620910  |2 bnb 
016 7 |z 013397154  |2 Uk 
019 |a 78987607  |a 182530751  |a 473096469  |a 488454745  |a 568007491  |a 606032834  |a 648227163  |a 654817487  |a 681167521  |a 722566384  |a 728037419  |a 806185765  |a 888437564  |a 961533509  |a 962660136  |a 988489574  |a 991986007  |a 994982647  |a 1011994736  |a 1037421521  |a 1037908088  |a 1038701247  |a 1055345938  |a 1081193106  |a 1083553647  |a 1153526251  |a 1162322967  |a 1163729908  |a 1228556655  |a 1286911807 
020 |a 9780262256957  |q (electronic bk.) 
020 |a 0262256959  |q (electronic bk.) 
020 |a 1282096753 
020 |a 9781282096752 
020 |a 9786612096754 
020 |a 6612096756 
020 |a 1423772539 
020 |a 9781423772538 
020 |z 026219547X 
020 |z 9780262195478 
029 1 |a AU@  |b 000044593429 
029 1 |a AU@  |b 000050978021 
029 1 |a AU@  |b 000053225267 
029 1 |a DEBBG  |b BV042957136 
029 1 |a DEBBG  |b BV044105103 
029 1 |a DEBSZ  |b 422276456 
029 1 |a GBVCP  |b 799433233 
029 1 |a HEBIS  |b 231578970 
029 1 |a NZ1  |b 12061859 
035 |a (OCoLC)68907209  |z (OCoLC)78987607  |z (OCoLC)182530751  |z (OCoLC)473096469  |z (OCoLC)488454745  |z (OCoLC)568007491  |z (OCoLC)606032834  |z (OCoLC)648227163  |z (OCoLC)654817487  |z (OCoLC)681167521  |z (OCoLC)722566384  |z (OCoLC)728037419  |z (OCoLC)806185765  |z (OCoLC)888437564  |z (OCoLC)961533509  |z (OCoLC)962660136  |z (OCoLC)988489574  |z (OCoLC)991986007  |z (OCoLC)994982647  |z (OCoLC)1011994736  |z (OCoLC)1037421521  |z (OCoLC)1037908088  |z (OCoLC)1038701247  |z (OCoLC)1055345938  |z (OCoLC)1081193106  |z (OCoLC)1083553647  |z (OCoLC)1153526251  |z (OCoLC)1162322967  |z (OCoLC)1163729908  |z (OCoLC)1228556655  |z (OCoLC)1286911807 
037 |a 4908  |b MIT Press 
037 |a 9780262256957  |b MIT Press 
050 4 |a QA278.2  |b .N43 2005eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
084 |a DAT 775f  |2 stub 
049 |a UAMI 
245 0 0 |a Nearest-neighbor methods in learning and vision :  |b theory and practice /  |c edited by Gregory Shakhnarovich, Trevor Darrell, Piotr Indyk. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2005. 
300 |a 1 online resource (vi, 252 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Neural information processing series 
500 |a " ... held in Whistler, British Columbia ... annual conference on Neural Information Processing Systems (NIPS) in December 2003"--Preface 
504 |a Includes bibliographical references and index. 
505 0 |a Nearest-neighbor searching and metric space dimensions / Kenneth L. Clarkson -- Locality-sensitive hashing using stable distributions / Alexandr Andoni [and others] -- New algorithms for efficient high-dimensional nonparametric classification / Ting Liu, Andrew W. Moore, and Alexander Gray -- Approximate nearest neighbor regression in very high dimensions / Sethu Vijayakumar, Aaron D'Souza, and Stefan Schaal -- Learning embeddings for fast approximate nearest neighbor retrieval / Vassilis Athitsos [and others] -- Parameter-sensitive hashing for fast pose estimation / Gregory Shakhnarovich, Paul Viola, and Trevor Darrell -- Contour matching using approximate Earth mover's distance / Kristen Grauman and Trevor Darrell -- Adaptive mean shift based clustering in high dimensions / Ilan Shimshoni, Bogdan Georgescu, and Peter Meer -- Object recognition using locality sensitive hashing of shape contexts / Andrea Frome and Jitendra Malik. 
588 0 |a Print version record. 
520 |a Regression and classification methods based on similarity of the input to stored examples have not been widely used in applications involving very large sets of high-dimensional data. Recent advances in computational geometry and machine learning, however, may alleviate the problems in using these methods on large data sets. This volume presents theoretical and practical discussions of nearest-neighbor (NN) methods in machine learning and examines computer vision as an application domain in which the benefit of these advanced methods is often dramatic. It brings together contributions from researchers in theory of computation, machine learning, and computer vision with the goals of bridging the gaps between disciplines and presenting state-of-the-art methods for emerging applications. The contributors focus on the importance of designing algorithms for NN search, and for the related classification, regression, and retrieval tasks, that remain efficient even as the number of points or the dimensionality of the data grows very large. The book begins with two theoretical chapters on computational geometry and then explores ways to make the NN approach practicable in machine learning applications where the dimensionality of the data and the size of the data sets make the naive methods for NN search prohibitively expensive. The final chapters describe successful applications of an NN algorithm, locality-sensitive hashing (LSH), to vision tasks. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Nearest neighbor analysis (Statistics)  |v Congresses. 
650 0 |a Machine learning  |v Congresses. 
650 0 |a Algorithms  |v Congresses. 
650 0 |a Geometry  |x Data processing  |v Congresses. 
650 0 |a Artificial intelligence. 
650 0 2 |a Algorithms 
650 0 2 |a Artificial Intelligence 
650 6 |a Analyse du plus proche voisin (Statistique)  |v Congrès. 
650 6 |a Apprentissage automatique  |v Congrès. 
650 6 |a Algorithmes  |v Congrès. 
650 6 |a Géométrie  |x Informatique  |v Congrès. 
650 6 |a Algorithmes. 
650 6 |a Intelligence artificielle. 
650 7 |a algorithms.  |2 aat 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Algorithms  |2 fast 
650 7 |a Geometry  |x Data processing  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Nearest neighbor analysis (Statistics)  |2 fast 
650 7 |a Anwendung  |2 gnd 
650 7 |a Maschinelles Lernen  |2 gnd 
650 7 |a Maschinelles Sehen  |2 gnd 
650 7 |a Nächste-Nachbarn-Problem  |2 gnd 
653 |a COMPUTER SCIENCE/Machine Learning & Neural Networks 
655 2 |a Congress 
655 7 |a proceedings (reports)  |2 aat 
655 7 |a Conference papers and proceedings  |2 fast 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congrès.  |2 rvmgf 
700 1 |a Shakhnarovich, Gregory. 
700 1 |a Darrell, Trevor. 
700 1 |a Indyk, Piotr. 
758 |i has work:  |a Nearest-neighbor methods in learning and vision (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYmCcwMpfJfVRQVFqg9pd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Nearest-neighbor methods in learning and vision.  |d Cambridge, Mass. : MIT Press, ©2005  |z 026219547X  |w (DLC) 2005053124  |w (OCoLC)61247438 
830 0 |a Neural information processing series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3338671  |z Texto completo 
938 |a Books 24x7  |b B247  |n bks00012940 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3338671 
938 |a ebrary  |b EBRY  |n ebr10173735 
938 |a EBSCOhost  |b EBSC  |n 156924 
938 |a YBP Library Services  |b YANK  |n 2426692 
938 |a YBP Library Services  |b YANK  |n 3201027 
994 |a 92  |b IZTAP