|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
EBOOKCENTRAL_ocm68907209 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
060516s2005 maua obs 101 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d YDXCP
|d OCLCQ
|d N$T
|d IDEBK
|d UAB
|d COCUF
|d OCLCE
|d OCLCQ
|d CCO
|d E7B
|d DKDLA
|d U5D
|d NNM
|d FVL
|d B24X7
|d OCLCQ
|d KIJ
|d OCLCQ
|d IEEEE
|d OCLCF
|d OCLCO
|d OCLCQ
|d COO
|d OCL
|d OCLCO
|d EBLCP
|d OCLCQ
|d OCLCO
|d OCLCQ
|d AZK
|d OCLCO
|d JBG
|d AGLDB
|d OCLCQ
|d TOA
|d OCLCQ
|d MOR
|d PIFBR
|d ZCU
|d OTZ
|d LIV
|d MERUC
|d ESU
|d OCLCQ
|d NJR
|d OCLCO
|d WY@
|d OCLCO
|d U3W
|d OCLCA
|d OCLCQ
|d LUE
|d OCLCO
|d BRL
|d OCLCO
|d STF
|d GILDS
|d WRM
|d VNS
|d OCLCQ
|d VTS
|d MERER
|d OCLCQ
|d ICG
|d CUY
|d OCLCQ
|d INT
|d VT2
|d AU@
|d OCLCQ
|d OCLCO
|d WYU
|d MITPR
|d REC
|d OCLCQ
|d A6Q
|d DKC
|d OCLCQ
|d OCLCO
|d M8D
|d OCLCO
|d OL$
|d OCLCQ
|d OCLCA
|d OCLCO
|d OCL
|d OCLCQ
|d OCLCA
|d OCLCQ
|d UKCRE
|d VLY
|d BRF
|d UKUOP
|d OCLCO
|d S2H
|d OCLCO
|d OCL
|d OCLCQ
|d OCLCO
|d OCLCL
|
015 |
|
|
|a GBA620910
|2 bnb
|
016 |
7 |
|
|z 013397154
|2 Uk
|
019 |
|
|
|a 78987607
|a 182530751
|a 473096469
|a 488454745
|a 568007491
|a 606032834
|a 648227163
|a 654817487
|a 681167521
|a 722566384
|a 728037419
|a 806185765
|a 888437564
|a 961533509
|a 962660136
|a 988489574
|a 991986007
|a 994982647
|a 1011994736
|a 1037421521
|a 1037908088
|a 1038701247
|a 1055345938
|a 1081193106
|a 1083553647
|a 1153526251
|a 1162322967
|a 1163729908
|a 1228556655
|a 1286911807
|
020 |
|
|
|a 9780262256957
|q (electronic bk.)
|
020 |
|
|
|a 0262256959
|q (electronic bk.)
|
020 |
|
|
|a 1282096753
|
020 |
|
|
|a 9781282096752
|
020 |
|
|
|a 9786612096754
|
020 |
|
|
|a 6612096756
|
020 |
|
|
|a 1423772539
|
020 |
|
|
|a 9781423772538
|
020 |
|
|
|z 026219547X
|
020 |
|
|
|z 9780262195478
|
029 |
1 |
|
|a AU@
|b 000044593429
|
029 |
1 |
|
|a AU@
|b 000050978021
|
029 |
1 |
|
|a AU@
|b 000053225267
|
029 |
1 |
|
|a DEBBG
|b BV042957136
|
029 |
1 |
|
|a DEBBG
|b BV044105103
|
029 |
1 |
|
|a DEBSZ
|b 422276456
|
029 |
1 |
|
|a GBVCP
|b 799433233
|
029 |
1 |
|
|a HEBIS
|b 231578970
|
029 |
1 |
|
|a NZ1
|b 12061859
|
035 |
|
|
|a (OCoLC)68907209
|z (OCoLC)78987607
|z (OCoLC)182530751
|z (OCoLC)473096469
|z (OCoLC)488454745
|z (OCoLC)568007491
|z (OCoLC)606032834
|z (OCoLC)648227163
|z (OCoLC)654817487
|z (OCoLC)681167521
|z (OCoLC)722566384
|z (OCoLC)728037419
|z (OCoLC)806185765
|z (OCoLC)888437564
|z (OCoLC)961533509
|z (OCoLC)962660136
|z (OCoLC)988489574
|z (OCoLC)991986007
|z (OCoLC)994982647
|z (OCoLC)1011994736
|z (OCoLC)1037421521
|z (OCoLC)1037908088
|z (OCoLC)1038701247
|z (OCoLC)1055345938
|z (OCoLC)1081193106
|z (OCoLC)1083553647
|z (OCoLC)1153526251
|z (OCoLC)1162322967
|z (OCoLC)1163729908
|z (OCoLC)1228556655
|z (OCoLC)1286911807
|
037 |
|
|
|a 4908
|b MIT Press
|
037 |
|
|
|a 9780262256957
|b MIT Press
|
050 |
|
4 |
|a QA278.2
|b .N43 2005eb
|
072 |
|
7 |
|a COM
|x 005030
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 004000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/1
|2 22
|
084 |
|
|
|a DAT 775f
|2 stub
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Nearest-neighbor methods in learning and vision :
|b theory and practice /
|c edited by Gregory Shakhnarovich, Trevor Darrell, Piotr Indyk.
|
260 |
|
|
|a Cambridge, Mass. :
|b MIT Press,
|c ©2005.
|
300 |
|
|
|a 1 online resource (vi, 252 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Neural information processing series
|
500 |
|
|
|a " ... held in Whistler, British Columbia ... annual conference on Neural Information Processing Systems (NIPS) in December 2003"--Preface
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Nearest-neighbor searching and metric space dimensions / Kenneth L. Clarkson -- Locality-sensitive hashing using stable distributions / Alexandr Andoni [and others] -- New algorithms for efficient high-dimensional nonparametric classification / Ting Liu, Andrew W. Moore, and Alexander Gray -- Approximate nearest neighbor regression in very high dimensions / Sethu Vijayakumar, Aaron D'Souza, and Stefan Schaal -- Learning embeddings for fast approximate nearest neighbor retrieval / Vassilis Athitsos [and others] -- Parameter-sensitive hashing for fast pose estimation / Gregory Shakhnarovich, Paul Viola, and Trevor Darrell -- Contour matching using approximate Earth mover's distance / Kristen Grauman and Trevor Darrell -- Adaptive mean shift based clustering in high dimensions / Ilan Shimshoni, Bogdan Georgescu, and Peter Meer -- Object recognition using locality sensitive hashing of shape contexts / Andrea Frome and Jitendra Malik.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Regression and classification methods based on similarity of the input to stored examples have not been widely used in applications involving very large sets of high-dimensional data. Recent advances in computational geometry and machine learning, however, may alleviate the problems in using these methods on large data sets. This volume presents theoretical and practical discussions of nearest-neighbor (NN) methods in machine learning and examines computer vision as an application domain in which the benefit of these advanced methods is often dramatic. It brings together contributions from researchers in theory of computation, machine learning, and computer vision with the goals of bridging the gaps between disciplines and presenting state-of-the-art methods for emerging applications. The contributors focus on the importance of designing algorithms for NN search, and for the related classification, regression, and retrieval tasks, that remain efficient even as the number of points or the dimensionality of the data grows very large. The book begins with two theoretical chapters on computational geometry and then explores ways to make the NN approach practicable in machine learning applications where the dimensionality of the data and the size of the data sets make the naive methods for NN search prohibitively expensive. The final chapters describe successful applications of an NN algorithm, locality-sensitive hashing (LSH), to vision tasks.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Nearest neighbor analysis (Statistics)
|v Congresses.
|
650 |
|
0 |
|a Machine learning
|v Congresses.
|
650 |
|
0 |
|a Algorithms
|v Congresses.
|
650 |
|
0 |
|a Geometry
|x Data processing
|v Congresses.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
0 |
2 |
|a Algorithms
|
650 |
0 |
2 |
|a Artificial Intelligence
|
650 |
|
6 |
|a Analyse du plus proche voisin (Statistique)
|v Congrès.
|
650 |
|
6 |
|a Apprentissage automatique
|v Congrès.
|
650 |
|
6 |
|a Algorithmes
|v Congrès.
|
650 |
|
6 |
|a Géométrie
|x Informatique
|v Congrès.
|
650 |
|
6 |
|a Algorithmes.
|
650 |
|
6 |
|a Intelligence artificielle.
|
650 |
|
7 |
|a algorithms.
|2 aat
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|
650 |
|
7 |
|a COMPUTERS
|x Enterprise Applications
|x Business Intelligence Tools.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|
650 |
|
7 |
|a Algorithms
|2 fast
|
650 |
|
7 |
|a Geometry
|x Data processing
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Nearest neighbor analysis (Statistics)
|2 fast
|
650 |
|
7 |
|a Anwendung
|2 gnd
|
650 |
|
7 |
|a Maschinelles Lernen
|2 gnd
|
650 |
|
7 |
|a Maschinelles Sehen
|2 gnd
|
650 |
|
7 |
|a Nächste-Nachbarn-Problem
|2 gnd
|
653 |
|
|
|a COMPUTER SCIENCE/Machine Learning & Neural Networks
|
655 |
|
2 |
|a Congress
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congrès.
|2 rvmgf
|
700 |
1 |
|
|a Shakhnarovich, Gregory.
|
700 |
1 |
|
|a Darrell, Trevor.
|
700 |
1 |
|
|a Indyk, Piotr.
|
758 |
|
|
|i has work:
|a Nearest-neighbor methods in learning and vision (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFYmCcwMpfJfVRQVFqg9pd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Nearest-neighbor methods in learning and vision.
|d Cambridge, Mass. : MIT Press, ©2005
|z 026219547X
|w (DLC) 2005053124
|w (OCoLC)61247438
|
830 |
|
0 |
|a Neural information processing series.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3338671
|z Texto completo
|
938 |
|
|
|a Books 24x7
|b B247
|n bks00012940
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3338671
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10173735
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 156924
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2426692
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3201027
|
994 |
|
|
|a 92
|b IZTAP
|