Gaussian processes for machine learning /
"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical an...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
MIT Press,
©2006.
|
Colección: | Adaptive computation and machine learning.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Regression
- Classification
- Covariance functions
- Model selection and adaptation of hyperparameters
- Relationships between GPs and other models
- Theoretical perspectives
- Approximation methods for large datasets
- Appendix A : Mathematical background
- Appendix B : Guassian Markov processes.