Cargando…

Gaussian processes for machine learning /

"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rasmussen, Carl Edward
Otros Autores: Williams, Christopher K. I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2006.
Colección:Adaptive computation and machine learning.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics."--Jacket
Descripción Física:1 online resource (xviii, 248 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 223-238) and indexes.
ISBN:9780262256834
0262256835
1423769902
9781423769903
9780262182539
026218253X
9786612097966
6612097965
1282097962
9781282097964
9786612096709
6612096705
0262261073
9780262261074
Acceso:Limited Users and Download Restrictions may Apply, ProQuest 1 User Licence. Available using University of Exeter Username and Password.