Gaussian processes for machine learning /
"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical an...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
MIT Press,
©2006.
|
Colección: | Adaptive computation and machine learning.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | "Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics."--Jacket |
---|---|
Descripción Física: | 1 online resource (xviii, 248 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 223-238) and indexes. |
ISBN: | 9780262256834 0262256835 1423769902 9781423769903 9780262182539 026218253X 9786612097966 6612097965 1282097962 9781282097964 9786612096709 6612096705 0262261073 9780262261074 |
Acceso: | Limited Users and Download Restrictions may Apply, ProQuest 1 User Licence. Available using University of Exeter Username and Password. |