Cargando…

Ultra-wideband signals and systems in communication engineering /

Ultra Wideband (UWB) is the hot new topic in wireless communication engineering today. High-speed communication over short distances using sub-nanosecond pulses, rather than conventional sinusoidal waves, has paved the way for cheap wireless transceivers, capturing the imagination of both academics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ghavami, M.
Otros Autores: Michael, L. B., Kohno, Ryuji, 1956-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester : John Wiley & Sons, ©2004.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ultra Wideband Signals and Systems in Communication Engineering; Contents; Preface; Acknowledgments; List of Figures; List of Tables; Introduction; I.1 Ultra wideband overview; I.2 A note on terminology; I.3 Historical development of UWB; I.4 Key benefits of UWB; I.5 UWB and Shannon's theory; I.6 Challenges for ultra wideband; I.7 Summary; 1 Basic properties of UWB signals and systems; 1.1 Introduction; 1.2 Power spectral density; 1.3 Pulse shape; 1.4 Pulse trains; 1.5 Spectral masks; 1.6 Multipath; 1.7 Penetration characteristics; 1.8 Spatial and spectral capacities
  • 1.9 Speed of data transmission1.10 Cost; 1.11 Size; 1.12 Power consumption; 1.13 Summary; 2 Generation of ultra wideband waveforms; 2.1 Introduction; 2.1.1 Damped sine waves; 2.2 Gaussian waveforms; 2.3 Orthogonal waveforms and Hermite pulses; 2.3.1 Hermite polynomials; 2.3.2 Orthogonal modified Hermite pulses; 2.3.3 Modulated and modified Hermite pulses; 2.4 Orthogonal prolate spheroidal wave functions; 2.4.1 Introduction; 2.4.2 Fundamentals of PSWF; 2.4.3 PSWF pulse generator; 2.5 Designing waveforms for specific spectral masks; 2.5.1 Introduction; 2.5.2 Multi-band modulation
  • 2.6 Practical constraints and effects of imperfections2.7 Summary; 3 Signal-processing techniques for UWB systems; 3.1 The effects of lossy medium on an UWB transmitted signal; 3.2 Time domain analysis; 3.2.1 Classification of signals; 3.2.2 Some useful functions; 3.2.3 Some useful operations; 3.2.4 Classification of systems; 3.2.5 Impulse response; 3.2.6 Distortionless transmission; 3.3 Frequency domain techniques; 3.3.1 Fourier transforms; 3.3.2 Frequency response approaches; 3.3.3 Transfer function; 3.3.4 Laplace transform; 3.3.5 z-Transform
  • 3.3.6 The relationship between the Laplace transform, the Fourier transform, and the z-transform3.4 UWB signal-processing issues and algorithms; 3.5 Detection and amplification; 3.6 Summary; 4 Ultra wideband channel modeling; 4.1 A simplified UWB multipath channel model; 4.1.1 Number of resolvable multipath components; 4.1.2 Multipath delay spread; 4.1.3 Multipath intensity profile; 4.1.4 Multipath amplitude-fading distribution; 4.1.5 Multipath arrival times; 4.2 Path loss model; 4.2.1 Free space loss; 4.2.2 Refraction; 4.2.3 Reflection; 4.2.4 Diffraction; 4.2.5 Wave clutter
  • 4.2.6 Aperture-medium coupling loss4.2.7 Absorption; 4.2.8 Example of free space path loss model; 4.3 Two-ray UWB propagation model; 4.3.1 Two-ray path loss; 4.3.2 Two-ray path loss model; 4.3.3 Impact of path loss frequency selectivity on UWB transmission; 4.4 Frequency domain autoregressive model; 4.4.1 Poles of the AR model; 4.5 Summary; 5 Ultra wideband communications; 5.1 Introduction; 5.2 UWB modulation methods; 5.2.1 Pulse position modulation; 5.2.2 Bi-phase modulation; 5.3 Other modulation methods; 5.3.1 Orthogonal pulse modulation; 5.3.2 Pulse amplitude modulation