Cargando…

Radar signals /

"A text and general reference on the design and analysis of radar signals. As radar technology evolves to encompass a growing spectrum of applications in military, aerospace, automotive, and other sectors, innovations in digital signal processing have risen to meet the demand. Presenting a long...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Levanon, Nadav (Autor), Mozeson, Eli (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc., [2004]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Basic Relationships: Range-Delay and Velocity-Doppler
  • 1.2. Accuracy, Resolution, and Ambiguity
  • 1.3. Environmental Diagram
  • 1.4. Other Trade-Offs and Penalties in Waveform Design
  • 1.5. Concluding Comments
  • 2. Matched Filter
  • 2.1. Complex Representation of Bandpass Signals
  • 2.2. Matched Filter
  • 2.3. Matched Filter for a Narrow Bandpass Signal
  • 2.4. Matched-Filter Response to Its Doppler-Shifted Signal
  • 3. Ambiguity Function
  • 3.1. Main Properties of the Ambiguity Function
  • 3.2. Proofs of the AF Properties
  • 3.3. Interpretation of Property 4
  • 3.4. Cuts Through the Ambiguity Function
  • 3.5. Additional Volume Distribution Relationships
  • 3.6. Periodic Ambiguity Function
  • 3.7. Discussion
  • Appendix 3A. MATLAB Code for Plotting Ambiguity Functions
  • 4. Basic Radar Signals
  • 4.1. Constant-Frequency Pulse
  • 4.2. Linear Frequency-Modulated Pulse
  • 4.3. Coherent Train of Identical Unmodulated Pulses
  • 5. Frequency-Modulated Pulse
  • 5.1. Costas Frequency Coding
  • 5.2. Nonlinear Frequency Modulation
  • Appendix 5A. MATLAB Code for Welch Construction of Costas Arrays
  • 6. Phase-Coded Pulse
  • 6.1. Barker Codes
  • 6.2. Chirplike Phase Codes
  • 6.3. Asymptotically Perfect Codes
  • 6.4. Golomb's Codes with Ideal Periodic Correlation
  • 6.5. Ipatov Code
  • 6.6. Optimal Filters for Sidelobe Suppression
  • 6.7. Huffman Code
  • 6.8. Bandwidth Considerations in Phase-Coded Signals
  • 6.9. Concluding Comments
  • Appendix 6A. Galois Fields
  • Appendix 6B. Quadriphase Barker 13
  • Appendix 6C. Gaussian-Windowed Sinc.
  • 7. Coherent Train of LFM Pulses
  • 7.1. Coherent Train of Identical LFM Pulses
  • 7.2. Filters Matched to Higher Doppler Shifts
  • 7.3. Interpulse Weighting
  • 7.4. Intra- and Interpulse Weighting
  • 7.5. Analytic Expressions of the Delay-Doppler Response of an LFM Pulse Train with Intra- and Interpulse Weighting
  • 8. Diverse PRI Pulse Trains
  • 8.1. Introduction to MTI Radar
  • 8.3. Diversifying the PRI on a Dwell-to-Dwell Basis
  • 9. Coherent Train of Diverse Pulses
  • 9.1. Diversity for Recurrent Lobes Reduction
  • 9.2. Diversity for Bandwidth Increase: Stepped Frequency
  • 9.3. Train of Complementary Pulses
  • 9.4. Train of Subcomplementary Pulses
  • 9.5. Train of Orthogonal Pulses
  • Appendix 9A. Generating a Numerical Stepped-Frequency Train of LFM Pulses
  • 10. Continuous-Wave Signals
  • 10.1. Revisiting the Periodic Ambiguity Function
  • 10.2. PAF of Ideal Phase-Coded Signals
  • 10.3. Doppler Sidelobe Reduction Using Weight Windows
  • 10.4. Creating a Shifted Response in Doppler and Delay
  • 10.5. Frequency-Modulated CW Signals
  • 10.6. Mixer Implementation of an FM CW Radar Receiver
  • Appendix 10A. Test for Ideal PACF
  • 11. Multicarrier Phase-Coded Signals
  • 11.1. Multicarrier Phase-Coded Signals with Low PMEPR
  • 11.2. Single MCPC Pulse
  • 11.3. CW (Periodic) Multicarrier Signal
  • 11.4. Train of Diverse Multicarrier Pulses
  • 11.5. Summary
  • Appendix. Advanced MATLAB Programs
  • A.1. Ambiguity Function Plot with a GUI
  • A.2. Creating Complex Signals for Use with ambfn1.m or ambfn7.m
  • A.3. Cross-Ambiguity Function Plot
  • A.4. Generating a CW Periodic Signal with Weighting on Receive.