Learning with kernels : support vector machines, regularization, optimization, and beyond /
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks....
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
MIT Press,
©2002.
|
Colección: | Adaptive computation and machine learning.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Series Foreword; Preface; 1
- A Tutorial Introduction; I
- Concepts and Tools; 2
- Kernels; 3
- Risk and Loss Functions; 4
- Regularization; 5
- Elements of Statistical Learning Theory; 6
- Optimization; II
- Support Vector Machines; 7
- Pattern Recognition; 8
- Single-Class Problems: Quantile Estimation and Novelty Detection; 9
- Regression Estimation; 10
- Implementation; 11
- Incorporating Invariances; 12
- Learning Theory Revisited; III
- Kernel Methods; 13
- Designing Kernels; 14
- Kernel Feature Extraction; 15
- Kernel Fisher Discriminant; 16
- Bayesian Kernel Methods.
- 17
- Regularized Principal Manifolds18
- Pre-Images and Reduced Set Methods; A
- Addenda; B
- Mathematical Prerequisites; References; Index; Notation and Symbols.