Cargando…

Beyond the Einstein addition law and its gyroscopic Thomas precession : the theory of gyrogroups and gyrovector spaces /

Evidence that Einstein's addition is regulated by the Thomas precession has come to light, turning the notorious Thomas precession, previously considered the ugly duckling of special relativity theory, into the beautiful swan of gyrogroup and gyrovector space theory, where it has been extended...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ungar, Abraham A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Kluwer Academic Publishers, 2002.
Colección:Fundamental theories of physics ; v. 117.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocm50322330
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 020710s2002 nyu ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d TULIB  |d OCLCQ  |d OCLCF  |d OCLCQ  |d EBLCP  |d OCLCQ  |d SUR  |d ZCU  |d MERUC  |d OCLCQ  |d SAV  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d SDF  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 55046462  |a 533495419  |a 702100613  |a 888714540 
020 |a 0306471345  |q (electronic bk.) 
020 |a 9780306471346  |q (electronic bk.) 
029 1 |a AU@  |b 000053244200 
029 1 |a DEBBG  |b BV044091072 
035 |a (OCoLC)50322330  |z (OCoLC)55046462  |z (OCoLC)533495419  |z (OCoLC)702100613  |z (OCoLC)888714540 
050 4 |a QC173.65  |b .U54 2002eb 
072 7 |a SCI  |x 061000  |2 bisacsh 
082 0 4 |a 530.11  |2 21 
049 |a UAMI 
100 1 |a Ungar, Abraham A. 
245 1 0 |a Beyond the Einstein addition law and its gyroscopic Thomas precession :  |b the theory of gyrogroups and gyrovector spaces /  |c by Abraham A. Ungar. 
260 |a New York :  |b Kluwer Academic Publishers,  |c 2002. 
300 |a 1 online resource (413 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Fundamental theories of physics ;  |v v. 117 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a Thomas Precession: The Missing Link -- Gyrogroups: Modeled on Einstein'S Addition -- The Einstein Gyrovector Space -- Hyperbolic Geometry of Gyrovector Spaces -- The Ungar Gyrovector Space -- The MÖbius Gyrovector Space -- Gyrogeometry -- Gyrooprations -- the SL(2, c) Approach -- The Cocycle Form -- The Lorentz Group and its Abstraction -- The Lorentz Transformation Link -- Other Lorentz Groups. 
520 |a Evidence that Einstein's addition is regulated by the Thomas precession has come to light, turning the notorious Thomas precession, previously considered the ugly duckling of special relativity theory, into the beautiful swan of gyrogroup and gyrovector space theory, where it has been extended by abstraction into an automorphism generator, called the Thomas gyration. The Thomas gyration, in turn, allows the introduction of vectors into hyperbolic geometry, where they are called gyrovectors, in such a way that Einstein's velocity additions turns out to be a gyrovector addition. Einstein's addition thus becomes a gyrocommutative, gyroassociative gyrogroup operation in the same way that ordinary vector addition is a commutative, associative group operation. Some gyrogroups of gyrovectors admit scalar multiplication, giving rise to gyrovector spaces in the same way that some groups of vectors that admit scalar multiplication give rise to vector spaces. Furthermore, gyrovector spaces form the setting for hyperbolic geometry in the same way that vector spaces form the setting for Euclidean geometry. In particular, the gyrovector space with gyrovector addition given by Einstein's (Möbius') addition forms the setting for the Beltrami (Poincaré) ball model of hyperbolic geometry. The gyrogroup-theoretic techniques developed in this book for use in relativity physics and in hyperbolic geometry allow one to solve old and new important problems in relativity physics. A case in point is Einstein's 1905 view of the Lorentz length contraction, which was contradicted in 1959 by Penrose, Terrell and others. The application of gyrogroup-theoretic techniques clearly tilt the balance in favor of Einstein. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Special relativity (Physics) 
650 0 |a Geometry, Hyperbolic. 
650 6 |a Relativité restreinte (Physique) 
650 6 |a Géométrie hyperbolique. 
650 7 |a SCIENCE  |x Physics  |x Relativity.  |2 bisacsh 
650 7 |a Geometry, Hyperbolic  |2 fast 
650 7 |a Special relativity (Physics)  |2 fast 
758 |i has work:  |a Beyond the Einstein addition law and its gyroscopic Thomas precession (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGJymCb4RbqDfjD3J4wPV3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ungar, Abraham A.  |t Beyond the Einstein addition law and its gyroscopic Thomas precession.  |d New York : Kluwer Academic Publishers, 2002  |z 0792369092 
830 0 |a Fundamental theories of physics ;  |v v. 117. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3035680  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3035680 
938 |a EBSCOhost  |b EBSC  |n 69516 
994 |a 92  |b IZTAP