Cargando…

Machine Learning under Resource Constraints. Fundamentals /

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data a...

Descripción completa

Detalles Bibliográficos
Otros Autores: Amrouch, Hussam (Contribuidor), Babbar, Rohit (Contribuidor), Bertram, Nico (Contribuidor), Borchert, Christoph (Contribuidor), Buschhoff, Markus (Contribuidor), Buschjäger, Sebastian (Contribuidor), Chen, Jian-Jia (Contribuidor), Chen, Kuan-Hsun (Contribuidor), Ellert, Jonas (Contribuidor), Falkenberg, Robert (Contribuidor), Fey, Matthias (Contribuidor), Fischer, Johannes (Contribuidor), Funke, Henning (Contribuidor), Gomez, Andres (Contribuidor), Guo, Ce (Contribuidor), Hess, Sibylle (Contribuidor), Kotthaus, Helena (Contribuidor), Kriege, Nils (Contribuidor), Krivošija, Amer (Contribuidor), Lang, Andreas (Contribuidor), Lenssen, Lars (Contribuidor), Lochmann, Alexander (Contribuidor), Luk, Wayne (Contribuidor), Marwedel, Peter (Contribuidor, Editor ), Masoudinejad, Mojtaba (Contribuidor), Mayer, Simon (Contribuidor), Morik, Katharina (Contribuidor, Editor ), Morris, Christopher (Contribuidor), Munteanu, Alexander (Contribuidor), Pfahler, Lukas (Contribuidor), Piatkowski, Nico (Contribuidor), Schubert, Erich (Contribuidor), Schultheis, Erik (Contribuidor), Shi, Junjie (Contribuidor), Spinczyk, Olaf (Contribuidor), Streicher, Jochen (Contribuidor), Suter, Lars (Contribuidor), Teubner, Jens (Contribuidor), Weichert, Frank (Contribuidor), Yayla, Mikail (Contribuidor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2022]
Colección:De Gruyter STEM.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 DEGRUYTEROA_on1356994849
003 OCoLC
005 20240209213017.0
006 m o d
007 cr |||||||||||
008 230103t20222023gw fo d z000 0 eng d
040 |a DEGRU  |b eng  |e rda  |c DEGRU  |d EBLCP  |d OCLCQ  |d A7U  |d OCLCO 
019 |a 1357015184 
020 |a 9783110785944 
020 |a 3110785943 
024 7 |a 10.1515/9783110785944  |2 doi 
029 1 |a AU@  |b 000074122487 
035 |a (OCoLC)1356994849  |z (OCoLC)1357015184 
044 |a gw  |c DE 
072 7 |a SCI013000  |2 bisacsh 
082 4 |a 006.31  |q OCoLC 
049 |a UAMI 
245 0 0 |a Machine Learning under Resource Constraints.  |p Fundamentals /  |c ed. by Katharina Morik, Peter Marwedel. 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2022] 
264 4 |c ©2023 
300 |a 1 online resource (XIV, 491 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a De Gruyter STEM 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t 1 Introduction --  |t Data Gathering and Resource Measuring --  |t 3 Streaming Data, Small Devices --  |t 4 Structured Data --  |t 5 Cluster Analysis --  |t 6 Hardware-Aware Execution --  |t 7 Memory Awareness --  |t 8 Communication Awareness --  |t 9 Energy Awareness --  |t Bibliography --  |t Index --  |t List of Contributors 
520 |a Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 03. Jan 2023). 
590 |a De Gruyter Online  |b De Gruyter Open Access eBooks 
650 0 |a Machine learning. 
650 4 |a Big Data. 
650 4 |a Eingebettete Systeme. 
650 4 |a Künstliche Intelligenz. 
650 4 |a Maschinelles Lernen. 
650 6 |a Apprentissage automatique. 
650 7 |a SCIENCE / Chemistry / General.  |2 bisacsh 
653 |a Artificial Intelligence. 
653 |a Big Data and Machine Learning. 
653 |a Cyber-physical systems. 
653 |a Data mining for Ubiquitous System Software. 
653 |a Embedded Systems and Machine Learning. 
653 |a Highly Distributed Data. 
653 |a ML on Small devices. 
653 |a Machine learning for knowledge discovery. 
653 |a Machine learning in high-energy physics. 
653 |a Resource-Aware Machine Learning. 
653 |a Resource-Constrained Data Analysis. 
700 1 |a Amrouch, Hussam,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Babbar, Rohit,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Bertram, Nico,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Borchert, Christoph,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Buschhoff, Markus,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Buschjäger, Sebastian,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Chen, Jian-Jia,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Chen, Kuan-Hsun,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Ellert, Jonas,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Falkenberg, Robert,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Fey, Matthias,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Fischer, Johannes,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Funke, Henning,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Gomez, Andres,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Guo, Ce,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Hess, Sibylle,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Kotthaus, Helena,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Kriege, Nils,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Krivošija, Amer,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Lang, Andreas,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Lenssen, Lars,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Lochmann, Alexander,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Luk, Wayne,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Marwedel, Peter,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Marwedel, Peter,  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Masoudinejad, Mojtaba,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Mayer, Simon,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Morik, Katharina,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Morik, Katharina,  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Morris, Christopher,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Munteanu, Alexander,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Pfahler, Lukas,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Piatkowski, Nico,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Schubert, Erich,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Schultheis, Erik,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Shi, Junjie,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Spinczyk, Olaf,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Streicher, Jochen,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Suter, Lars,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Teubner, Jens,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Weichert, Frank,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Yayla, Mikail,  |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
776 0 |c EPUB  |z 9783110786125 
776 0 |c print  |z 9783110785937 
830 0 |a De Gruyter STEM. 
856 4 0 |u https://www.degruyter.com/openurl?genre=book&isbn=9783110785944  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9783110785944 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7156125 
994 |a 92  |b IZTAP