|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
DEGRUYTEROA_ocn858761758 |
003 |
OCoLC |
005 |
20240209213017.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130921t20132013gw a ob 000 0 eng d |
010 |
|
|
|a 2013015791
|
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d OCLCO
|d UMC
|d N$T
|d DEBSZ
|d E7B
|d OCLCQ
|d OCLCF
|d DEBBG
|d YDXCP
|d NKT
|d AGLDB
|d MOR
|d PIFAG
|d ZCU
|d MERUC
|d OCLCQ
|d DEGRU
|d U3W
|d STF
|d VTS
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d TKN
|d OSU
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d UKKNU
|d C6I
|d ELW
|d OCLCQ
|d SFB
|d OCLCO
|d N$T
|d OCLCQ
|d OCLCO
|d OCLCQ
|d AUD
|d OCLCO
|d OCLCL
|d OCLCQ
|
019 |
|
|
|a 880456860
|a 961552765
|a 962580249
|a 992835630
|a 1055335372
|a 1065703553
|a 1081290637
|a 1086964108
|a 1107367214
|a 1111288822
|a 1144286639
|a 1162205561
|a 1224938514
|a 1290053110
|a 1290503726
|
020 |
|
|
|a 9783110282269
|q (electronic bk.)
|
020 |
|
|
|a 3110282267
|q (electronic bk.)
|
020 |
|
|
|a 3110282224
|
020 |
|
|
|a 9783110282221
|
024 |
7 |
|
|a 10.1515/9783110282269
|2 doi
|
029 |
1 |
|
|a AU@
|b 000054195466
|
029 |
1 |
|
|a CHBIS
|b 010396781
|
029 |
1 |
|
|a CHNEW
|b 001057447
|
029 |
1 |
|
|a CHVBK
|b 33122853X
|
029 |
1 |
|
|a CHVBK
|b 569638151
|
029 |
1 |
|
|a DEBBG
|b BV042348598
|
029 |
1 |
|
|a DEBBG
|b BV042988448
|
029 |
1 |
|
|a DEBBG
|b BV043037410
|
029 |
1 |
|
|a DEBBG
|b BV043787290
|
029 |
1 |
|
|a DEBBG
|b BV044062432
|
029 |
1 |
|
|a DEBSZ
|b 397466625
|
029 |
1 |
|
|a DEBSZ
|b 421242337
|
029 |
1 |
|
|a DEBSZ
|b 472799312
|
029 |
1 |
|
|a AU@
|b 000066526231
|
035 |
|
|
|a (OCoLC)858761758
|z (OCoLC)880456860
|z (OCoLC)961552765
|z (OCoLC)962580249
|z (OCoLC)992835630
|z (OCoLC)1055335372
|z (OCoLC)1065703553
|z (OCoLC)1081290637
|z (OCoLC)1086964108
|z (OCoLC)1107367214
|z (OCoLC)1111288822
|z (OCoLC)1144286639
|z (OCoLC)1162205561
|z (OCoLC)1224938514
|z (OCoLC)1290053110
|z (OCoLC)1290503726
|
037 |
|
|
|a 102369
|b Knowledge Unlatched
|
050 |
|
4 |
|a QA378.5
|b .L37 2013
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
072 |
|
7 |
|a PBW
|2 bicssc
|
082 |
0 |
4 |
|a 515.357
|a 515/.357
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Large scale inverse problems :
|b computational methods and applications in the earth sciences /
|c edited by Mike Cullen, Melina A. Freitag, Stefan Kindermann, Robert Scheichl.
|
264 |
|
1 |
|a Berlin ;
|a Boston :
|b De Gruyter,
|c [2013]
|
264 |
|
4 |
|c ©2013
|
300 |
|
|
|a 1 online resource (ix, 203 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Radon Series on Computational and Applied Mathematics
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a Preface; Synergy of inverse problems and data assimilation techniques; 1 Introduction; 2 Regularization theory; 3 Cycling, Tikhonov regularization and 3DVar; 4 Error analysis; 5 Bayesian approach to inverse problems; 6 4DVar; 7 Kalman filter and Kalman smoother; 8 Ensemble methods; 9 Numerical examples; 9.1 Data assimilation for an advection-diffusion system; 9.2 Data assimilation for the Lorenz-95 system; 10 Concluding remarks; Variational data assimilation for very large environmental problems; 1 Introduction; 2 Theory of variational data assimilation.
|
505 |
8 |
|
|a 2.1 Incremental variational data assimilation3 Practical implementation; 3.1 Model development; 3.2 Background error covariances; 3.3 Observation errors; 3.4 Optimization methods; 3.5 Reduced order approaches; 3.6 Issues for nested models; 3.7 Weak-constraint variational assimilation; 4 Summary and future perspectives; Ensemble filter techniques for intermittent data assimilation; 1 Bayesian statistics; 1.1 Preliminaries; 1.2 Bayesian inference; 1.3 Coupling of random variables; 1.4 Monte Carlo methods; 2 Stochastic processes; 2.1 Discrete time Markov processes.
|
505 |
8 |
|
|a 2.2 Stochastic difference and differential equations2.3 Ensemble prediction and sampling methods; 3 Data assimilation and filtering; 3.1 Preliminaries; 3.2 SequentialMonte Carlo method; 3.3 Ensemble Kalman filter (EnKF); 3.4 Ensemble transform Kalman-Bucy filter; 3.5 Guided sequential Monte Carlo methods; 3.6 Continuous ensemble transform filter formulations; 4 Concluding remarks; Inverse problems in imaging; 1 Mathematicalmodels for images; 2 Examples of imaging devices; 2.1 Optical imaging; 2.2 Transmission tomography; 2.3 Emission tomography; 2.4 MR imaging; 2.5 Acoustic imaging.
|
505 |
8 |
|
|a 2.6 Electromagnetic imaging3 Basic image reconstruction; 3.1 Deblurring and point spread functions; 3.2 Noise; 3.3 Reconstruction methods; 4 Missing data and prior information; 4.1 Prior information; 4.2 Undersampling and superresolution; 4.3 Inpainting; 4.4 Surface imaging; 5 Calibration problems; 5.1 Blind deconvolution; 5.2 Nonlinear MR imaging; 5.3 Attenuation correction in SPECT; 5.4 Blind spectral unmixing; 6 Model-based dynamic imaging; 6.1 Kinetic models; 6.2 Parameter identification; 6.3 Basis pursuit; 6.4 Motion and deformation models; 6.5 Advanced PDE models.
|
505 |
8 |
|
|a The lost honor of l2-based regularization1 Introduction; 2 l1-based regularization; 3 Poor data; 4 Large, highly ill-conditioned problems; 4.1 Inverse potential problem; 4.2 The effect of ill-conditioning on L1 regularization; 4.3 Nonlinear, highly ill-posed examples; 5 Summary; List of contributors.
|
520 |
|
|
|a This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.
|
588 |
0 |
|
|a Print version record.
|
542 |
1 |
|
|f This work is licensed under a Creative Commons license
|u https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
|
546 |
|
|
|a English.
|
506 |
0 |
|
|a Open Access
|5 EbpS
|
590 |
|
|
|a De Gruyter Online
|b De Gruyter Open Access eBooks
|
650 |
|
0 |
|a Inverse problems (Differential equations)
|
650 |
|
6 |
|a Problèmes inverses (Équations différentielles)
|
650 |
|
7 |
|a Applied mathematics.
|2 bicssc
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Inverse problems (Differential equations)
|2 fast
|
653 |
|
|
|a Data Assimilation.
|
653 |
|
|
|a Geosciences.
|
653 |
|
|
|a Ill-Posed Inverse Problems.
|
653 |
|
|
|a Optimization.
|
653 |
|
|
|a Regularization.
|
700 |
1 |
|
|a Cullen, Michael J. P.,
|e editor.
|
700 |
1 |
|
|a Freitag, Melina A.,
|d 1980-
|e editor.
|1 https://id.oclc.org/worldcat/entity/E39PBJbRjWgYw8MpXDwWhh9FKd
|
700 |
1 |
|
|a Kindermann, Stefan,
|d 1972-
|e editor.
|1 https://id.oclc.org/worldcat/entity/E39PBJpDRPfyq9b4mtfmfkdCwC
|
700 |
1 |
|
|a Scheichl, Robert,
|d 1972-
|e editor.
|1 https://id.oclc.org/worldcat/entity/E39PCjwRR9mJDtdQ6bYM3WxGQC
|
776 |
0 |
8 |
|i Print version:
|a Scheichl, Robert.
|t Large Scale Inverse Problems : Computational Methods and Applications in the Earth Sciences.
|d Berlin : De Gruyter, ©2013
|z 9783110282221
|
830 |
|
0 |
|a Radon series on computational and applied mathematics.
|
856 |
4 |
0 |
|u https://www.degruyter.com/openurl?genre=book&isbn=9783110282269
|z Texto completo
|
938 |
|
|
|a Knowledge Unlatched
|b KNOW
|n 6221c84f-e90b-4035-8555-44e2a1a5b321
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25312738
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110282269
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10784108
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 641761
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10817671
|
994 |
|
|
|a 92
|b IZTAP
|