Cargando…

Progress in Commutative Algebra 2.

This is the second of two volumes of a state-of-the-art survey article collection which emanates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sather-Wagstaff, Sean M. (Editor ), Francisco, Christopher (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Walter De Gruyter 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 DEGRUYTEROA_ocn817079246
003 OCoLC
005 20240209213017.0
006 m o d
007 cr un|---uuuuu
008 121013s2012 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d OAPEN  |d DIPCC  |d OCLCQ  |d ESU  |d OCLCO  |d OCLCF 
019 |a 1159393559 
020 |a 1280569565 
020 |a 9781280569562 
020 |a 9783110278590 
020 |a 3110278596 
020 |a 9783110278606 
020 |a 311027860X 
035 |a (OCoLC)817079246  |z (OCoLC)1159393559 
050 4 |a QA251.3 
072 7 |a P  |2 bicssc 
082 0 4 |a 512.2  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
245 0 0 |a Progress in Commutative Algebra 2. 
260 |b Walter De Gruyter  |c 2012. 
300 |a 1 online resource (328 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This is the second of two volumes of a state-of-the-art survey article collection which emanates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. The current trends in two of the most active areas of commutative algebra are presented: non-noetherian rings (factorization, ideal theory, integrality), advances from the homological study of noetherian rings (the local theory, graded situation and its interactions with combinatorics and geometry). This second volume discusses closures, decompositions, and factorization. 
546 |a English. 
505 0 |a Preface; A Guide to Closure Operations in Commutative Algebra; 1 Introduction; 2 What Is a Closure Operation?; 2.1 The Basics; 2.2 Not-quite-closure Operations; 3 Constructing Closure Operations; 3.1 Standard Constructions; 3.2 Common Closures as Iterations of Standard Constructions; 4 Properties of Closures; 4.1 Star-, Semi-prime, and Prime Operations; 4.2 Closures Defined by Properties of (Generic) Forcing Algebras; 4.3 Persistence; 4.4 Axioms Related to the Homological Conjectures; 4.5 Tight Closure and Its Imitators; 4.6 (Homogeneous) Equational Closures and Localization. 
505 8 |a 5 Reductions, Special Parts of Closures, Spreads, and Cores5.1 Nakayama Closures and Reductions; 5.2 Special Parts of Closures; 6 Classes of Rings Defined by Closed Ideals; 6.1 When Is the Zero Ideal Closed?; 6.2 When Are 0 and Principal Ideals Generated by Non-zerodivisors Closed?; 6.3 When Are Parameter Ideals Closed (Where R Is Local)?; 6.4 When Is Every Ideal Closed?; 7 Closure Operations on (Sub)modules; 7.1 Torsion Theories; A Survey of Test Ideals; 1 Introduction; 2 Characteristic p Preliminaries; 2.1 The Frobenius Endomorphism; 2.2 F-purity; 3 The Test Ideal. 
505 8 |a 3.1 Test Ideals of Map-pairs3.2 Test Ideals of Rings; 3.3 Test Ideals in Gorenstein Local Rings; 4 Connections with Algebraic Geometry; 4.1 Characteristic 0 Preliminaries; 4.2 Reduction to Characteristic p> 0 and Multiplier Ideals; 4.3 Multiplier Ideals of Pairs; 4.4 Multiplier Ideals vs. Test Ideals of Divisor Pairs; 5 Tight Closure and Applications of Test Ideals; 5.1 The Briançon-Skoda Theorem; 5.2 Tight Closure for Modules and Test Elements; 6 Test Ideals for Pairs (R, at) and Applications; 6.1 Initial Definitions of at -test Ideals; 6.2 at -tight Closure; 6.3 Applications. 
505 8 |a 7 Generalizations of Pairs: Algebras of Maps8 Other Measures of Singularities in Characteristic p; 8.1 F-rationality; 8.2 F-injectivity; 8.3 F-signature and F-splitting Ratio; 8.4 Hilbert-Kunz( -Monsky) Multiplicity; 8.5 F-ideals, F-stable Submodules, and F-pure Centers; A Canonical Modules and Duality; A.1 Canonical Modules, Cohen-Macaulay and Gorenstein Rings; A.2 Duality; B Divisors; C Glossary and Diagrams on Types of Singularities; C.1 Glossary of Terms; Finite-dimensional Vector Spaces with Frobenius Action; 1 Introduction; 2 A Noncommutative Principal Ideal Domain. 
505 8 |a 3 Ideal Theory and Divisibility in Noncommutative PIDs3.1 Examples in K{F}; 4 Matrix Transformations over Noncommutative PIDs; 5 Module Theory over Noncommutative PIDs; 6 Computing the Invariant Factors; 6.1 Injective Frobenius Actions on Finite Dimensional Vector Spaces over a Perfect Field; 7 The Antinilpotent Case; Finiteness and Homological Conditions in Commutative Group Rings; 1 Introduction; 2 Finiteness Conditions; 3 Homological Dimensions and Regularity; 4 Zero Divisor Controlling Conditions; Regular Pullbacks; 1 Introduction; 2 Some Background; 3 Pullbacks of Noetherian Rings. 4 Pullbacks of Prüfer Rings. 
590 |a De Gruyter Online  |b De Gruyter Open Access eBooks 
650 0 |a Commutative algebra. 
650 6 |a Algèbre commutative. 
650 7 |a Mathematics & science.  |2 bicssc 
650 7 |a Commutative algebra.  |2 fast  |0 (OCoLC)fst00871202 
653 |a Mathematics 
700 1 |a Sather-Wagstaff, Sean M.  |4 edt 
700 1 |a Francisco, Christopher.  |4 edt 
856 4 0 |u https://www.degruyter.com/openurl?genre=book&isbn=9783110278606  |z Texto completo 
938 |a OAPEN Foundation  |b OPEN  |n 1004886 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 359916 
938 |a DCS UAT TEST 8  |b TEST  |n 1004886 
994 |a 92  |b IZTAP