Cargando…

Visual Quality Assessment by Machine Learning

The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Xu, Long (Autor), Lin, Weisi (Autor), Kuo, C.-C. Jay (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Signal Processing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-287-468-9
003 DE-He213
005 20220425114422.0
007 cr nn 008mamaa
008 150509s2015 si | s |||| 0|eng d
020 |a 9789812874689  |9 978-981-287-468-9 
024 7 |a 10.1007/978-981-287-468-9  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Xu, Long.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Visual Quality Assessment by Machine Learning  |h [electronic resource] /  |c by Long Xu, Weisi Lin, C.-C. Jay Kuo. 
250 |a 1st ed. 2015. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 132 p. 19 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Signal Processing,  |x 2196-4084 
505 0 |a Introduction -- Fundamental knowledges of machine learning -- Image features and feature processing -- Feature pooling by learning -- Metrics fusion -- Summary and remarks for future research. 
520 |a The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also encompasses the preliminary knowledge of Machine Learning (ML) to VQA tasks and newly developed ML techniques for the purpose. Hence, firstly, it is particularly helpful to the beginner-readers (including research students) to enter into VQA field in general and LB-VQA one in particular. Secondly, new development in VQA and LB-VQA particularly are detailed in this book, which will give peer researchers and engineers new insights in VQA. 
650 0 |a Signal processing. 
650 0 |a Computer vision. 
650 0 |a Computational intelligence. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computer Vision. 
650 2 4 |a Computational Intelligence. 
700 1 |a Lin, Weisi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kuo, C.-C. Jay.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789812874696 
776 0 8 |i Printed edition:  |z 9789812874672 
830 0 |a SpringerBriefs in Signal Processing,  |x 2196-4084 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-287-468-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)