Cargando…

Vulnerability of Watersheds to Climate Change Assessed by Neural Network and Analytical Hierarchy Process

The increase in GHG gases in the atmosphere due to expansions in industrial and vehicular concentration is attributed to warming of the climate world wide. The resultant change in climatic pattern can induce abnormalities in the hydrological cycle. As a result, the regular functionality of river wat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Roy, Uttam (Autor), Majumder, Mrinmoy (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Water Science and Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-287-344-6
003 DE-He213
005 20220427110421.0
007 cr nn 008mamaa
008 151228s2016 si | s |||| 0|eng d
020 |a 9789812873446  |9 978-981-287-344-6 
024 7 |a 10.1007/978-981-287-344-6  |2 doi 
050 4 |a TJ807-830 
072 7 |a THX  |2 bicssc 
072 7 |a TEC031010  |2 bisacsh 
072 7 |a THV  |2 thema 
082 0 4 |a 621.042  |2 23 
100 1 |a Roy, Uttam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Vulnerability of Watersheds to Climate Change Assessed by Neural Network and Analytical Hierarchy Process  |h [electronic resource] /  |c by Uttam Roy, Mrinmoy Majumder. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a X, 89 p. 58 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Water Science and Technology,  |x 2194-7252 
505 0 |a Introduction -- Climate Change and its Impacts -- Watershed Vulnerabilities -- Methodology -- Results and Discussions. 
520 |a The increase in GHG gases in the atmosphere due to expansions in industrial and vehicular concentration is attributed to warming of the climate world wide. The resultant change in climatic pattern can induce abnormalities in the hydrological cycle. As a result, the regular functionality of river watersheds will also be affected. This Brief highlights a new methodology to rank the watersheds in terms of its vulnerability to change in climate. This Brief introduces a Vulnerability Index which will be directly proportional to the climatic impacts of the watersheds. Analytical Hierarchy Process and Artificial Neural Networks are used in a cascading manner to develop the model for prediction of the vulnerability index. 
650 0 |a Renewable energy sources. 
650 0 |a Water. 
650 0 |a Hydrology. 
650 0 |a Climatology. 
650 0 |a Electric power production. 
650 1 4 |a Renewable Energy. 
650 2 4 |a Water. 
650 2 4 |a Climate Sciences. 
650 2 4 |a Electrical Power Engineering. 
650 2 4 |a Mechanical Power Engineering. 
700 1 |a Majumder, Mrinmoy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789812873439 
776 0 8 |i Printed edition:  |z 9789812873453 
830 0 |a SpringerBriefs in Water Science and Technology,  |x 2194-7252 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-287-344-6  |z Texto Completo 
912 |a ZDB-2-EES 
912 |a ZDB-2-SXEE 
950 |a Earth and Environmental Science (SpringerNature-11646) 
950 |a Earth and Environmental Science (R0) (SpringerNature-43711)