Cargando…

Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques

This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for prod...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Majumder, Mrinmoy (Autor), Saha, Apu K. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Energy,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-287-308-8
003 DE-He213
005 20220426235154.0
007 cr nn 008mamaa
008 160429s2016 si | s |||| 0|eng d
020 |a 9789812873088  |9 978-981-287-308-8 
024 7 |a 10.1007/978-981-287-308-8  |2 doi 
050 4 |a TJ807-830 
072 7 |a THX  |2 bicssc 
072 7 |a TEC031010  |2 bisacsh 
072 7 |a THV  |2 thema 
082 0 4 |a 621.042  |2 23 
100 1 |a Majumder, Mrinmoy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques  |h [electronic resource] /  |c by Mrinmoy Majumder, Apu K. Saha. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a X, 49 p. 14 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Energy,  |x 2191-5539 
505 0 |a Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location ? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion. 
520 |a This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged. 
650 0 |a Renewable energy sources. 
650 0 |a Computational intelligence. 
650 0 |a Electric power production. 
650 0 |a Environmental economics. 
650 0 |a Climatology. 
650 1 4 |a Renewable Energy. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Electrical Power Engineering. 
650 2 4 |a Mechanical Power Engineering. 
650 2 4 |a Environmental Economics. 
650 2 4 |a Climate Sciences. 
700 1 |a Saha, Apu K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789812873071 
776 0 8 |i Printed edition:  |z 9789812873095 
830 0 |a SpringerBriefs in Energy,  |x 2191-5539 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-287-308-8  |z Texto Completo 
912 |a ZDB-2-ENE 
912 |a ZDB-2-SXEN 
950 |a Energy (SpringerNature-40367) 
950 |a Energy (R0) (SpringerNature-43717)