|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-981-287-308-8 |
003 |
DE-He213 |
005 |
20220426235154.0 |
007 |
cr nn 008mamaa |
008 |
160429s2016 si | s |||| 0|eng d |
020 |
|
|
|a 9789812873088
|9 978-981-287-308-8
|
024 |
7 |
|
|a 10.1007/978-981-287-308-8
|2 doi
|
050 |
|
4 |
|a TJ807-830
|
072 |
|
7 |
|a THX
|2 bicssc
|
072 |
|
7 |
|a TEC031010
|2 bisacsh
|
072 |
|
7 |
|a THV
|2 thema
|
082 |
0 |
4 |
|a 621.042
|2 23
|
100 |
1 |
|
|a Majumder, Mrinmoy.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques
|h [electronic resource] /
|c by Mrinmoy Majumder, Apu K. Saha.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Singapore :
|b Springer Nature Singapore :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a X, 49 p. 14 illus., 13 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Energy,
|x 2191-5539
|
505 |
0 |
|
|a Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location ? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
|
520 |
|
|
|a This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
|
650 |
|
0 |
|a Renewable energy sources.
|
650 |
|
0 |
|a Computational intelligence.
|
650 |
|
0 |
|a Electric power production.
|
650 |
|
0 |
|a Environmental economics.
|
650 |
|
0 |
|a Climatology.
|
650 |
1 |
4 |
|a Renewable Energy.
|
650 |
2 |
4 |
|a Computational Intelligence.
|
650 |
2 |
4 |
|a Electrical Power Engineering.
|
650 |
2 |
4 |
|a Mechanical Power Engineering.
|
650 |
2 |
4 |
|a Environmental Economics.
|
650 |
2 |
4 |
|a Climate Sciences.
|
700 |
1 |
|
|a Saha, Apu K.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9789812873071
|
776 |
0 |
8 |
|i Printed edition:
|z 9789812873095
|
830 |
|
0 |
|a SpringerBriefs in Energy,
|x 2191-5539
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-981-287-308-8
|z Texto Completo
|
912 |
|
|
|a ZDB-2-ENE
|
912 |
|
|
|a ZDB-2-SXEN
|
950 |
|
|
|a Energy (SpringerNature-40367)
|
950 |
|
|
|a Energy (R0) (SpringerNature-43717)
|