Non-metrisable Manifolds
Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifol...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Gauld, David (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
Springer Nature Singapore : Imprint: Springer,
2014.
|
Edición: | 1st ed. 2014. |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Introduction to Topological Manifolds
por: Lee, John
Publicado: (2011) -
Simplicial Structures in Topology
por: Ferrario, Davide L., et al.
Publicado: (2011) -
Differentiable Manifolds A Theoretical Physics Approach /
por: Torres del Castillo, Gerardo F.
Publicado: (2012) -
A Guide to the Classification Theorem for Compact Surfaces
por: Gallier, Jean, et al.
Publicado: (2013) -
A Cp-Theory Problem Book Topological and Function Spaces /
por: Tkachuk, Vladimir V.
Publicado: (2011)