Cargando…

Non-metrisable Manifolds

Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gauld, David (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-287-257-9
003 DE-He213
005 20220425095327.0
007 cr nn 008mamaa
008 141204s2014 si | s |||| 0|eng d
020 |a 9789812872579  |9 978-981-287-257-9 
024 7 |a 10.1007/978-981-287-257-9  |2 doi 
050 4 |a QA613-613.8 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Gauld, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Non-metrisable Manifolds  |h [electronic resource] /  |c by David Gauld. 
250 |a 1st ed. 2014. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 203 p. 51 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Topological Manifolds -- Edge of the World: When are Manifolds Metrisable? -- Geometric Tools -- Type I Manifolds and the Bagpipe Theorem -- Homeomorphisms and Dynamics on Non-Metrisable Manifolds -- Are Perfectly Normal Manifolds Metrisable? -- Smooth Manifolds -- Foliations on Non-Metrisable Manifolds -- Non-Hausdorff Manifolds and Foliations. 
520 |a Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifolds, are much more abundant but have a more modest history, having become of increasing interest only over the past 40 years or so. The first book on this topic, this book ranges from criteria for metrisability, dynamics on non-metrisable manifolds, Nyikos's Bagpipe Theorem and whether perfectly normal manifolds are metrisable to structures on manifolds, especially the abundance of exotic differential structures and the dearth of foliations on the long plane. A rigid foliation of the Euclidean plane is described. This book is intended for graduate students and mathematicians who are curious about manifolds beyond the metrisability wall, and especially the use of Set Theory as a tool. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Nonlinear Optics. 
650 0 |a Algebraic topology. 
650 1 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Nonlinear Optics. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789812872586 
776 0 8 |i Printed edition:  |z 9789812872562 
776 0 8 |i Printed edition:  |z 9789811011528 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-287-257-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)