|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-981-287-167-1 |
003 |
DE-He213 |
005 |
20220421145924.0 |
007 |
cr nn 008mamaa |
008 |
140814s2015 si | s |||| 0|eng d |
020 |
|
|
|a 9789812871671
|9 978-981-287-167-1
|
024 |
7 |
|
|a 10.1007/978-981-287-167-1
|2 doi
|
050 |
|
4 |
|a TK5102.9
|
072 |
|
7 |
|a TJF
|2 bicssc
|
072 |
|
7 |
|a UYS
|2 bicssc
|
072 |
|
7 |
|a TEC008000
|2 bisacsh
|
072 |
|
7 |
|a TJF
|2 thema
|
072 |
|
7 |
|a UYS
|2 thema
|
082 |
0 |
4 |
|a 621.382
|2 23
|
100 |
1 |
|
|a Yu, Gang.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Human Action Analysis with Randomized Trees
|h [electronic resource] /
|c by Gang Yu, Junsong Yuan, Zicheng Liu.
|
250 |
|
|
|a 1st ed. 2015.
|
264 |
|
1 |
|a Singapore :
|b Springer Nature Singapore :
|b Imprint: Springer,
|c 2015.
|
300 |
|
|
|a VIII, 83 p. 30 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Signal Processing,
|x 2196-4084
|
505 |
0 |
|
|a Introduction to Human Action Analysis -- Supervised Trees for Human Action Recognition and Detection -- Unsupervised Trees for Human Action Search -- Propagative Hough Voting to Leverage Contextual Information -- Human Action Prediction with Multi-class Balanced Random Forest -- Conclusion.
|
520 |
|
|
|a This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction. We will also describe techniques for space-time action localization including branch-and-bound sub-volume search and propagative Hough voting.
|
650 |
|
0 |
|a Signal processing.
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
0 |
|a Probabilities.
|
650 |
1 |
4 |
|a Signal, Speech and Image Processing .
|
650 |
2 |
4 |
|a Computer Vision.
|
650 |
2 |
4 |
|a Probability Theory.
|
700 |
1 |
|
|a Yuan, Junsong.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Liu, Zicheng.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9789812871688
|
776 |
0 |
8 |
|i Printed edition:
|z 9789812871664
|
830 |
|
0 |
|a SpringerBriefs in Signal Processing,
|x 2196-4084
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-981-287-167-1
|z Texto Completo
|
912 |
|
|
|a ZDB-2-ENG
|
912 |
|
|
|a ZDB-2-SXE
|
950 |
|
|
|a Engineering (SpringerNature-11647)
|
950 |
|
|
|a Engineering (R0) (SpringerNature-43712)
|