Cargando…

Random Matrix Theory with an External Source

This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Brézin, Edouard (Autor), Hikami, Shinobu (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Mathematical Physics, 19
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-3316-2
003 DE-He213
005 20220428094946.0
007 cr nn 008mamaa
008 170113s2016 si | s |||| 0|eng d
020 |a 9789811033162  |9 978-981-10-3316-2 
024 7 |a 10.1007/978-981-10-3316-2  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Brézin, Edouard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Random Matrix Theory with an External Source  |h [electronic resource] /  |c by Edouard Brézin, Shinobu Hikami. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 138 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1765 ;  |v 19 
520 |a This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov-Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries. 
650 0 |a Mathematical physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Nuclear physics. 
650 0 |a System theory. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Nuclear and Particle Physics. 
650 2 4 |a Complex Systems. 
700 1 |a Hikami, Shinobu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811033155 
776 0 8 |i Printed edition:  |z 9789811033179 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1765 ;  |v 19 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-3316-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)