Cargando…

Hilbert's Seventh Problem Solutions and Extensions /

This exposition is primarily a survey of the elementary yet subtle innovations of several mathematicians between 1929 and 1934 that led to partial and then complete solutions to Hilbert's Seventh Problem (from the International Congress of Mathematicians in Paris, 1900). This volume is suitable...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tubbs, Robert (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:IMSc Lecture Notes in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-2645-4
003 DE-He213
005 20230130052737.0
007 cr nn 008mamaa
008 161122s2016 si | s |||| 0|eng d
020 |a 9789811026454  |9 978-981-10-2645-4 
024 7 |a 10.1007/978-981-10-2645-4  |2 doi 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
072 7 |a PBX  |2 thema 
082 0 4 |a 510.9  |2 23 
100 1 |a Tubbs, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hilbert's Seventh Problem  |h [electronic resource] :  |b Solutions and Extensions /  |c by Robert Tubbs. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 85 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a IMSc Lecture Notes in Mathematics,  |x 2509-8098 
505 0 |a Chapter 1. Hilbert's seventh problem: Its statement and origins -- Chapter 2. The transcendence of e; and ep -- Chapter 3. Three partial solutions -- Chapter 4. Gelfond's solution -- Chapter 5. Schneider's solution -- Chapter 6. Hilbert's seventh problem and transcendental functions -- Chapter 7. Variants and generalizations. 
520 |a This exposition is primarily a survey of the elementary yet subtle innovations of several mathematicians between 1929 and 1934 that led to partial and then complete solutions to Hilbert's Seventh Problem (from the International Congress of Mathematicians in Paris, 1900). This volume is suitable for both mathematics students, wishing to experience how different mathematical ideas can come together to establish results, and for research mathematicians interested in the fascinating progression of mathematical ideas that solved Hilbert's problem and established a modern theory of transcendental numbers. . 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Functional analysis. 
650 0 |a Integral equations. 
650 0 |a Number theory. 
650 1 4 |a History of Mathematical Sciences. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Integral Equations. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811026447 
776 0 8 |i Printed edition:  |z 9789811026461 
830 0 |a IMSc Lecture Notes in Mathematics,  |x 2509-8098 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-2645-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)