Cargando…

Introduction to the Theory of Standard Monomials Second Edition /

The book is a reproduction of a course of lectures delivered by the author in 1983-84 which appeared in the Brandeis Lecture Notes series. The aim of this course was to give an introduction to the series of papers by concentrating on the case of the full linear group. In recent years, there has been...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Seshadri, C. S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Texts and Readings in Mathematics, 46
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-1813-8
003 DE-He213
005 20220616085034.0
007 cr nn 008mamaa
008 160822s2016 si | s |||| 0|eng d
020 |a 9789811018138  |9 978-981-10-1813-8 
024 7 |a 10.1007/978-981-10-1813-8  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Seshadri, C. S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to the Theory of Standard Monomials  |h [electronic resource] :  |b Second Edition /  |c by C. S. Seshadri. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 224 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Readings in Mathematics,  |x 2366-8725 ;  |v 46 
505 0 |a Chapter 1. Schubert Varieties in the Grassmannian -- Chapter 2. Standard monomial theory on SLn(k)/Q -- Chapter 3. Applications -- Chapter 4. Schubert varieties in G/Q. 
520 |a The book is a reproduction of a course of lectures delivered by the author in 1983-84 which appeared in the Brandeis Lecture Notes series. The aim of this course was to give an introduction to the series of papers by concentrating on the case of the full linear group. In recent years, there has been great progress in standard monomial theory due to the work of Peter Littelmann. The author's lectures (reproduced in this book) remain an excellent introduction to standard monomial theory. d-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">Standard monomial theory deals with the construction of nice bases of finite dimensional irreducible representations of semi-simple algebraic groups or, in geometric terms, nice bases of coordinate rings of flag varieties (and their Schubert subvarieties) associated with these groups. Besides its intrinsic interest, standard monomial theory has applications to the study of the geometry of Schubert varieties. Standard monomial theory has its origin in the work of Hodge, giving bases of the coordinate rings of the Grassmannian and its Schubert subvarieties by "standard monomials". In its modern form, standard monomial theory was developed by the author in a series of papers written in collaboration with V. Lakshmibai and C. Musili. In the second edition of the book, conjectures of a standard monomial theory for a general semi-simple (simply-connected) algebraic group, due to Lakshmibai, have been added as an appendix, and the bibliography has been revised. 
650 0 |a Algebraic geometry. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Field Theory and Polynomials. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811018121 
776 0 8 |i Printed edition:  |z 9789811018145 
830 0 |a Texts and Readings in Mathematics,  |x 2366-8725 ;  |v 46 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-1813-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)