Cargando…

Spatio-Temporal Recommendation in Social Media

This book covers the major fundamentals of and the latest research on next-generation spatio-temporal recommendation systems in social media. It begins by describing the emerging characteristics of social media in the era of mobile internet, and explores the limitations to be found in current recomm...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yin, Hongzhi (Autor), Cui, Bin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-0748-4
003 DE-He213
005 20230309191021.0
007 cr nn 008mamaa
008 160519s2016 si | s |||| 0|eng d
020 |a 9789811007484  |9 978-981-10-0748-4 
024 7 |a 10.1007/978-981-10-0748-4  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Yin, Hongzhi.  |e author.  |0 (orcid)0000-0003-1395-261X  |1 https://orcid.org/0000-0003-1395-261X  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spatio-Temporal Recommendation in Social Media  |h [electronic resource] /  |c by Hongzhi Yin, Bin Cui. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 114 p. 26 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a 1. Introduction -- 2. Temporal Context-Aware Recommendation -- 3. Spatial Context-Aware Recommendation -- 4. Location-based and Real-time Recommendation -- 5. Fast Online Recommendation. . 
520 |a This book covers the major fundamentals of and the latest research on next-generation spatio-temporal recommendation systems in social media. It begins by describing the emerging characteristics of social media in the era of mobile internet, and explores the limitations to be found in current recommender techniques. The book subsequently presents a series of latent-class user models to simulate users' behaviors in decision-making processes, which effectively overcome the challenges arising from temporal dynamics of users' behaviors, user interest drift over geographical regions, data sparsity and cold start. Based on these well designed user models, the book develops effective multi-dimensional index structures such as Metric-Tree, and proposes efficient top-k retrieval algorithms to accelerate the process of online recommendation and support real-time recommendation. In addition, it offers methodologies and techniques for evaluating both the effectiveness and efficiency of spatio-temporal recommendation systems in social media. The book will appeal to a broad readership, from researchers and developers to undergraduate and graduate students. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Application software. 
650 0 |a Database management. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Database Management. 
700 1 |a Cui, Bin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811007477 
776 0 8 |i Printed edition:  |z 9789811007491 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-0748-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)