Cargando…

Big Visual Data Analysis Scene Classification and Geometric Labeling /

This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chen, Chen (Autor), Ren, Yuzhuo (Autor), Kuo, C.-C. Jay (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Signal Processing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-0631-9
003 DE-He213
005 20220428222523.0
007 cr nn 008mamaa
008 160224s2016 si | s |||| 0|eng d
020 |a 9789811006319  |9 978-981-10-0631-9 
024 7 |a 10.1007/978-981-10-0631-9  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Chen, Chen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Big Visual Data Analysis  |h [electronic resource] :  |b Scene Classification and Geometric Labeling /  |c by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a X, 122 p. 94 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Signal Processing,  |x 2196-4084 
505 0 |a Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work. 
520 |a This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks. 
650 0 |a Signal processing. 
650 0 |a Computer vision. 
650 0 |a Information visualization. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computer Vision. 
650 2 4 |a Data and Information Visualization. 
700 1 |a Ren, Yuzhuo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kuo, C.-C. Jay.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811006296 
776 0 8 |i Printed edition:  |z 9789811006302 
830 0 |a SpringerBriefs in Signal Processing,  |x 2196-4084 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-0631-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)