Cargando…

Poisson Point Processes and Their Application to Markov Processes

An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Itô, Kiyosi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Probability and Mathematical Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-0272-4
003 DE-He213
005 20220423181917.0
007 cr nn 008mamaa
008 151224s2015 si | s |||| 0|eng d
020 |a 9789811002724  |9 978-981-10-0272-4 
024 7 |a 10.1007/978-981-10-0272-4  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Itô, Kiyosi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Poisson Point Processes and Their Application to Markov Processes  |h [electronic resource] /  |c by Kiyosi Itô. 
250 |a 1st ed. 2015. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 43 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Probability and Mathematical Statistics,  |x 2365-4341 
520 |a An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m< (called the stagnancy rate). The necessary and sufficient conditions for a pair k, m was obtained so that the correspondence is precisely described. For this, Itô used,  as a fundamental tool, the notion of Poisson point processes formed of all excursions of  the process on S \ {a}. This theory of Itô's of Poisson point processes of excursions is indeed a breakthrough. It has been expanded and applied to more general extension problems by many succeeding researchers. Thus we may say that this lecture note by Itô is really a memorial work in the extension problems of Markov processes. Especially in Chapter 1 of this note, a general theory of Poisson point processes is given that reminds us of Itô's beautiful and impressive lectures in his day. 
650 0 |a Probabilities. 
650 0 |a Measure theory. 
650 0 |a Functional analysis. 
650 1 4 |a Probability Theory. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811002717 
776 0 8 |i Printed edition:  |z 9789811002731 
830 0 |a SpringerBriefs in Probability and Mathematical Statistics,  |x 2365-4341 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-0272-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)