Cargando…

Nonlinear Principal Component Analysis and Its Applications

This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data.  In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ord...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mori, Yuichi (Autor), Kuroda, Masahiro (Autor), Makino, Naomichi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:JSS Research Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-0159-8
003 DE-He213
005 20220428183142.0
007 cr nn 008mamaa
008 161209s2016 si | s |||| 0|eng d
020 |a 9789811001598  |9 978-981-10-0159-8 
024 7 |a 10.1007/978-981-10-0159-8  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Mori, Yuichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonlinear Principal Component Analysis and Its Applications  |h [electronic resource] /  |c by Yuichi Mori, Masahiro Kuroda, Naomichi Makino. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a X, 80 p. 17 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a JSS Research Series in Statistics,  |x 2364-0065 
505 0 |a 1. Introduction -- 2. Nonlinear Principal Component Analysis -- 3. Application. 
520 |a This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data.  In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology.  In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods.  This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Social sciences-Statistical methods. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
700 1 |a Kuroda, Masahiro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Makino, Naomichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811001574 
776 0 8 |i Printed edition:  |z 9789811001581 
830 0 |a JSS Research Series in Statistics,  |x 2364-0065 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-0159-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)