Cargando…

Application of Geometric Algebra to Electromagnetic Scattering The Clifford-Cauchy-Dirac Technique /

This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagneti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Seagar, Andrew (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Springer Nature Singapore : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-981-10-0089-8
003 DE-He213
005 20220427183220.0
007 cr nn 008mamaa
008 151112s2016 si | s |||| 0|eng d
020 |a 9789811000898  |9 978-981-10-0089-8 
024 7 |a 10.1007/978-981-10-0089-8  |2 doi 
050 4 |a TK5101-5105.9 
072 7 |a TJF  |2 bicssc 
072 7 |a TEC024000  |2 bisacsh 
072 7 |a TJF  |2 thema 
082 0 4 |a 621.3  |2 23 
100 1 |a Seagar, Andrew.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Application of Geometric Algebra to Electromagnetic Scattering  |h [electronic resource] :  |b The Clifford-Cauchy-Dirac Technique /  |c by Andrew Seagar. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XXII, 179 p. 53 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I. Preparation: History -- Notation -- Geometry -- Space and Time -- Part II. Formulation: Scattering -- Cauchy Integrals -- Hardy Projections -- Construction of Solutions -- Part III. Demonstration: Examples -- Part IV. Contemplation: Perspectives -- Appendices. 
520 |a This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types of materials. On any particular machine, it results in either a faster solution for a given problem or the ability to solve problems of greater complexity. The Clifford-Cauchy-Dirac technique offers very real and significant advantages in uniformity, complexity, speed, storage, stability, consistency and accuracy. 
650 0 |a Telecommunication. 
650 0 |a Mathematical physics. 
650 0 |a Mathematics-Data processing. 
650 0 |a Numerical analysis. 
650 1 4 |a Microwaves, RF Engineering and Optical Communications. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811000881 
776 0 8 |i Printed edition:  |z 9789811000904 
776 0 8 |i Printed edition:  |z 9789811013850 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-981-10-0089-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)