Cargando…

Computational Finance An Introductory Course with R /

The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Arratia, Argimiro (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Paris : Atlantis Press : Imprint: Atlantis Press, 2014.
Edición:1st ed. 2014.
Colección:Atlantis Studies in Computational Finance and Financial Engineering, 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-6239-070-6
003 DE-He213
005 20220117223033.0
007 cr nn 008mamaa
008 140508s2014 fr | s |||| 0|eng d
020 |a 9789462390706  |9 978-94-6239-070-6 
024 7 |a 10.2991/978-94-6239-070-6  |2 doi 
050 4 |a QA76.9.C65 
072 7 |a UYM  |2 bicssc 
072 7 |a COM072000  |2 bisacsh 
072 7 |a UYM  |2 thema 
082 0 4 |a 003.3  |2 23 
100 1 |a Arratia, Argimiro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Finance  |h [electronic resource] :  |b An Introductory Course with R /  |c by Argimiro Arratia. 
250 |a 1st ed. 2014. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2014. 
300 |a X, 301 p. 41 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Computational Finance and Financial Engineering,  |x 2352-3115 ;  |v 1 
505 0 |a An abridged introduction to finance -- Statistics of financial time series -- Correlations, causalities and similarities -- Time series models in finance -- Brownian motion, binomial trees and Monte Carlo simulation -- Trade on pattern mining or value estimation -- Optimization heuristics in finance -- Portfolio optimization -- Online finance -- Appendix: The R programming environment. 
520 |a The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from  the  RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to compute are also described. 
650 0 |a Computer simulation. 
650 0 |a Statistics . 
650 0 |a Social sciences-Mathematics. 
650 0 |a Macroeconomics. 
650 0 |a Mathematical statistics-Data processing. 
650 1 4 |a Computer Modelling. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Macroeconomics and Monetary Economics. 
650 2 4 |a Statistics and Computing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789462390713 
776 0 8 |i Printed edition:  |z 9789462390690 
830 0 |a Atlantis Studies in Computational Finance and Financial Engineering,  |x 2352-3115 ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.2991/978-94-6239-070-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)