Cargando…

Normally Hyperbolic Invariant Manifolds The Noncompact Case /

This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Eldering, Jaap (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Paris : Atlantis Press : Imprint: Atlantis Press, 2013.
Edición:1st ed. 2013.
Colección:Atlantis Studies in Dynamical Systems, 2
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-6239-003-4
003 DE-He213
005 20220223205727.0
007 cr nn 008mamaa
008 130817s2013 fr | s |||| 0|eng d
020 |a 9789462390034  |9 978-94-6239-003-4 
024 7 |a 10.2991/978-94-6239-003-4  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Eldering, Jaap.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Normally Hyperbolic Invariant Manifolds  |h [electronic resource] :  |b The Noncompact Case /  |c by Jaap Eldering. 
250 |a 1st ed. 2013. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2013. 
300 |a XII, 189 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Dynamical Systems,  |x 2213-3534 ;  |v 2 
505 0 |a Introduction -- Manifolds of bounded geometry -- Persistence of noncompact NHIMs -- Extension of results. 
520 |a This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples. The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context. Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds. 
650 0 |a Dynamical systems. 
650 0 |a Mathematics. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789462390423 
776 0 8 |i Printed edition:  |z 9789462390041 
776 0 8 |i Printed edition:  |z 9789462390027 
830 0 |a Atlantis Studies in Dynamical Systems,  |x 2213-3534 ;  |v 2 
856 4 0 |u https://doi.uam.elogim.com/10.2991/978-94-6239-003-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)