Cargando…

Equilibrium Statistical Mechanics of Lattice Models

Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lavis, David A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Theoretical and Mathematical Physics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-017-9430-5
003 DE-He213
005 20220117163450.0
007 cr nn 008mamaa
008 150131s2015 ne | s |||| 0|eng d
020 |a 9789401794305  |9 978-94-017-9430-5 
024 7 |a 10.1007/978-94-017-9430-5  |2 doi 
050 4 |a Q295 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Lavis, David A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Equilibrium Statistical Mechanics of Lattice Models  |h [electronic resource] /  |c by David A. Lavis. 
250 |a 1st ed. 2015. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 793 p. 101 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical and Mathematical Physics,  |x 1864-5887 
505 0 |a Part I Thermodynamics, Statistical Mechanical Models and Phase Transitions -- Introduction -- Thermodynamics -- Statistical Mechanics -- A Survey of Models -- Phase Transitions and Scaling Theory -- Part II Classical Approximation Methods -- Phenomenological Theory and Landau Expansions -- Classical Methods -- The Van der Waals Equation -- Landau Expansions with One Order Parameter -- Landau Expansions with Two Order Parameter -- Landau Theory for a Tricritical Point -- Landau_Ginzburg Theory -- Mean-Field Theory -- Cluster-Variation Methods -- Part III Exact Results -- Introduction -- Algebraic Methods -- Transformation Methods -- Edge-Decorated Ising Models -- 11 Transfer Matrices: Incipient Phase Transitions -- Transfer Matrices: Exactly Solved Models -- Dimer Models -- Part IV Series and Renormalization Group Methods -- Introduction -- Series Expansions -- Real-Space Renormalization Group Theory -- A Appendices.- References and Author Index. 
520 |a Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm-Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg-Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi-Hijmans-De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef-Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Padé, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources. 
650 0 |a System theory. 
650 0 |a Mathematical physics. 
650 0 |a Condensed matter. 
650 0 |a Probabilities. 
650 1 4 |a Complex Systems. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Probability Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789401794299 
776 0 8 |i Printed edition:  |z 9789401794312 
776 0 8 |i Printed edition:  |z 9789402405040 
830 0 |a Theoretical and Mathematical Physics,  |x 1864-5887 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-94-017-9430-5  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)