Geometry from Dynamics, Classical and Quantum
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Cariñena, José F. (Autor), Ibort, Alberto (Autor), Marmo, Giuseppe (Autor), Morandi, Giuseppe (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces
por: Shchepetilov, Alexey V.
Publicado: (2006) -
Mathematical Implications of Einstein-Weyl Causality
por: Borchers, Hans Jürgen, et al.
Publicado: (2006) -
The Fermi-Pasta-Ulam Problem A Status Report /
Publicado: (2008) -
Topological Quantum Field Theory and Four Manifolds
por: Labastida, Jose, et al.
Publicado: (2005) -
Darboux Transformations in Integrable Systems Theory and their Applications to Geometry /
por: Gu, Chaohao, et al.
Publicado: (2005)