Cargando…

Parallelism in Matrix Computations

This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. Th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gallopoulos, Efstratios (Autor), Philippe, Bernard (Autor), Sameh, Ahmed H. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Scientific Computation,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • List of Figures
  • List of Tables
  • List of Algorithms
  • Notations used in the book
  • Part I Basics
  • Parallel Programming Paradigms
  • Computational Models
  • Principles of parallel programming
  • Fundamental kernels
  • Vector operations
  • Higher level BLAS
  • General organization for dense matrix factorizations
  • Sparse matrix computations
  • Part II Dense and special matrix computations
  • Recurrences and triangular systems
  • Definitions and examples
  • Linear recurrences
  • Implementations for a given number of processors
  • Nonlinear recurrences
  • General linear systems
  • Gaussian elimination
  • Pair wise pivoting
  • Block LU factorization
  • Remarks
  • Banded linear systems
  • LUbased schemes with partial pivoting
  • The Spike family of algorithms
  • The Spike balance scheme
  • A tearing based banded solver
  • Tridiagonal systems
  • Special linear systems
  • Vandermonde solvers
  • Banded Toeplitz linear systems solvers
  • Symmetric and Anti symmetric Decomposition (SAS)
  • Rapid elliptic solvers
  • Orthogonal factorization and linear least squares problems
  • Definitions
  • QR factorization via Givens rotations
  • QR factorization via Householder reductions
  • Gram Schmidt orthogonalization
  • Normal equations vs. orthogonal reductions
  • Hybrid algorithms when m>n
  • Orthogonal factorization of block angular matrices
  • Rank deficient linear least squares problems
  • The symmetric eigenvalue and singular value problems
  • The Jacobi algorithms
  • Tridiagonalization based schemes
  • Bidiagonalization via Householder reduction
  • Part III Sparse matrix computations
  • Iterative schemes for large linear systems
  • An example
  • Classical splitting methods
  • Polynomial methods
  • Preconditioners
  • A tearing based solver for generalized banded preconditioners
  • Row projection methods for large non symmetric linear systems
  • Multiplicative Schwarz preconditioner with GMRES
  • Large symmetric eigenvalue problems
  • Computing dominant eigenpairs and spectral transformations
  • The Lanczos method
  • A block Lanczos approach for solving symmetric perturbed standard eigenvalue problems
  • The Davidson methods
  • The trace minimization method for the symmetric generalized eigenvalue problem
  • The sparse singular value problem
  • Part IV Matrix functions and characteristics
  • Matrix functions and the determinant
  • Matrix functions
  • Determinants
  • Computing the matrix pseudospectrum
  • Grid based methods
  • Dimensionality reduction on the domain: Methods based on path following
  • Dimensionality reduction on the matrix: Methods based on projection
  • Notes
  • References.