Cargando…

Accuracy Verification Methods Theory and Algorithms /

The importance of accuracy verification methods was understood at the very beginning of the development of numerical analysis. Recent decades have seen a rapid growth of results related to adaptive numerical methods and a posteriori estimates. However, in this important area there often exists a not...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mali, Olli (Autor), Neittaanmäki, Pekka (Autor), Repin, Sergey (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Computational Methods in Applied Sciences, 32
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • 1 Errors Arising In Computer Simulation Methods
  • 1.1 General scheme
  • 1.2 Errors of mathematical models
  • 1.3 Approximation errors
  • 1.4 Numerical errors
  • 2 Error Indicators
  • 2.1 Error indicators and adaptive numerical methods
  • 2.1.1 Error indicators for FEM solutions
  • 2.1.2 Accuracy of error indicators
  • 2.2 Error indicators for the energy norm
  • 2.2.1 Error indicators based on interpolation estimates
  • 2.2.2 Error indicators based on approximation of the error functional
  • 2.2.3 Error indicators of the Runge type
  • 2.3 Error indicators for goal-oriented quantities
  • 2.3.1 Error indicators relying on the superconvergence of averaged fluxes in the primal and adjoint problems
  • 2.3.2 Error indicators using the superconvergence of approximations in the primal problem
  • 2.3.3 Error indicators based on partial equilibration of fluxes in the original problem
  • 3 Guaranteed Error Bounds I
  • 3.1 Ordinary differential equations
  • 3.1.1 Derivation of guaranteed error bounds
  • 3.1.2 Computation of error bounds
  • 3.2 Partial differential equations
  • 3.2.1 Maximal deviation from the exact solution
  • 3.2.2 Minimal deviation from the exact solution
  • 3.2.3 Particular cases
  • 3.2.4 Problems with mixed boundary conditions
  • 3.2.5 Estimates of global constants entering the majorant
  • 3.2.6 Error majorants based on Poincar´e inequalities
  • 3.2.7 Estimates with partially equilibrated fluxes
  • 3.3 Error control algorithms
  • 3.3.1 Global minimization of the majorant
  • 3.3.2 Getting an error bound by local procedures
  • 3.4 Indicators based on error majorants
  • 3.5 Applications to adaptive methods
  • 3.6 Combined (primal-dual) error norms and the majorant
  • 4 Guaranteed Error Bounds II
  • 4.1 Linear elasticity
  • 4.1.1 Introduction
  • 4.1.2 Euler-Bernoulli beam
  • 4.1.3 The Kirchhoff-Love arch model
  • 4.1.4 The Kirchhoff-Love plate
  • 4.1.5 The Reissner-Mindlin plate
  • 4.1.6 3D linear elasticity
  • 4.1.7 The plane stress model
  • 4.1.8 The plane strain model
  • 4.2 The Stokes Problem
  • 4.2.1 Divergence-free approximations
  • 4.2.2 Approximations with nonzero divergence
  • 4.2.3 Stokes problem in rotating system
  • 4.3 A simple Maxwell type problem
  • 4.3.1 Estimates of deviations from exact solutions
  • 4.3.2 Numerical examples
  • 4.4 Generalizations
  • 4.4.1 Error majorant
  • 4.4.2 Error minorant
  • 5 Errors Generated By Uncertain Data
  • 5.1 Mathematical models with incompletely known data
  • 5.2 The accuracy limit
  • 5.3 Estimates of the worst and best case scenario errors
  • 5.4 Two-sided bounds of the radius of the solution set
  • 5.5 Computable estimates of the radius of the solution set
  • 5.5.1 Using the majorant
  • 5.5.2 Using a reference solution
  • 5.5.3 An advanced lower bound
  • 5.6 Multiple sources of indeterminacy
  • 5.6.1 Incompletely known right-hand side
  • 5.6.2 The reaction diffusion problem
  • 5.7 Error indication and indeterminate data
  • 5.8 Linear elasticity with incompletely known Poisson ratio
  • 5.8.1 Sensitivity of the energy functional
  • 5.8.2 Example: axisymmetric model
  • 6 Overview Of Other Results And Open Problems
  • 6.1 Error estimates for approximations violating conformity
  • 6.2 Linear elliptic equations
  • 6.3 Time-dependent problems
  • 6.4 Optimal control and inverse problems
  • 6.5 Nonlinear boundary value problems
  • 6.5.1 Variational inequalities
  • 6.5.2 Elastoplasticity
  • 6.5.3 Problems with power growth energy functionals
  • 6.6 Modeling errors
  • 6.7 Error bounds for iteration methods
  • 6.7.1 General iteration algorithm
  • 6.7.2 A priori estimates of errors
  • 6.7.3 A posteriori estimates of errors
  • 6.7.4 Advanced forms of error bounds
  • 6.7.5 Systems of linear simultaneous equations
  • 6.7.6 Ordinary differential equations
  • 6.8 Roundoff errors
  • 6.9 Open problems
  • A Mathematical Background
  • A.1 Vectors and tensors
  • A.2 Spaces of functions
  • A.2.1 Lebesgue and Sobolev spaces
  • A.2.2 Boundary traces
  • A.2.3 Linear functionals
  • A.3 Inequalities
  • A.3.1 The Hölder inequality
  • A.3.2 The Poincaré and Friedrichs inequalities
  • A.3.3 Korn's inequality
  • A.3.4 LBB inequality
  • A.4 Convex functionals
  • B Boundary Value Problems
  • B.1 Generalized solutions of boundary value problems
  • B.2 Variational statements of elliptic boundary value problems
  • B.3 Saddle point statements of elliptic boundary value problems
  • B.3.1 Introduction to the theory of saddle points
  • B.3.2 Saddle point statements of linear elliptic problems
  • B.3.3 Saddle point statements of nonlinear variational problems
  • B.4 Numerical methods
  • B.4.1 Finite difference methods
  • B.4.2 Variational difference methods
  • B.4.3 Petrov-Galerkin methods
  • B.4.4 Mixed finite element methods
  • B.4.5 Trefftz methods
  • B.4.6 Finite volume methods
  • B.4.7 Discontinuous Galerkin methods
  • B.4.8 Fictitious domain methods
  • C A Priori Verification Of Accuracy
  • C.1 Projection error estimate
  • C.2 Interpolation theory in Sobolev spaces
  • C.3 A priori convergence rate estimates
  • C.4 A priori error estimates for mixed FEM
  • References
  • Notation
  •  Index.