Nonlinear Dynamics and Chaotic Phenomena: An Introduction
This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics -- integrable systems, Poincaré maps, chaos, fractals and strange attracto...
| Clasificación: | Libro Electrónico | 
|---|---|
| Autor principal: | |
| Autor Corporativo: | |
| Formato: | Electrónico eBook | 
| Idioma: | Inglés | 
| Publicado: | 
      Dordrecht :
        
      Springer Netherlands : Imprint: Springer,    
    
      2014.
     | 
| Edición: | 2nd ed. 2014. | 
| Colección: | Fluid Mechanics and Its Applications,
              103             | 
| Temas: | |
| Acceso en línea: | Texto Completo | 
                Tabla de Contenidos: 
            
                  - 1 Nonlinear Ordinary Differential Equations
 - 1.1 First-order Systems
 - 1.1.1 Dynamical System
 - 1.1.2 Lipschitz Condition
 - 1.1.3 Gronwall's Lemma
 - 1.1.4 Linear Equations
 - 1.1.5 Autonomous Equations
 - 1.1.6 Stability of Equilibrium Points
 - 1.1.6.1 Liapunov and Asymptotic Stability
 - 1.1.6.2 Liapunov Function Method
 - 1.1.7 Center Manifold Theorem
 - 1.2 Phase-plane Analysis
 - 1.3 Fully Nonlinear Evolution
 - 1.4 Non-autonomous Systems
 - 2 Bifurcation Theory
 - 2.1 Stability and Bifurcation
 - 2.2 Saddle-Node, Transcritical and Pitchfork Bifurcations
 - 2.3 Hopf Bifurcation
 - 2.4 Break-up of Bifurcations under Perturbations
 - 2.5 Bifurcation Theory of One-Dimensional Maps
 - 2.6 Appendix: The Normal Form Reduction
 - 3 Hamiltonian Dynamics
 - 3.1 Hamilton's Equations
 - 3.2 Phase Space
 - 3.3 Canonical Transformations
 - 3.4 The Hamilton-Jacobi Equation
 - 3.5 Action-Angle Variables
 - 3.6 Infinitesimal Canonical Transformations
 - 3.7 Poisson's Brackets
 - 4 Integrable Systems
 - 4.1 Separable Hamiltonian Systems
 - 4.2 Integrable Systems
 - 4.3 Dynamics on the Tori
 - 4.4 Canonical Perturbation Theory
 - 4.5 Komogorov-Arnol'd-Moser Theory
 - 4.6 Breakdown of Integrability and Criteria for Transition to Chaos
 - 4.6.1 Local Criteria
 - 4.6.2 Local Stability vs. Global Stability
 - 4.6.3 Global Criteria
 - 4.7 Magnetic Island Overlap and Stochasticity in Magnetic Confinement Systems
 - 4.8 Appendix: The Problem of Internal Resonance in Nonlinearly-Coupled Systems
 - 5 Chaos in Conservative Systems
 - 5.1 Phasse-Space Dynamics of Conservative Systems
 - 5.2 Poincar´e's Surface of Section
 - 5.3 Area-preserving Mappings
 - 5.4 Twist Maps
 - 5.5 Tangent Maps
 - 5.6 Poincar´e-Birkhoff Fixed-Point Theorem
 - 5.7 Homoclinic and Heteroclinic Points
 - 5.8 Quantitative Measures of Chaos
 - 5.8.1 Liapunov Exponents
 - 5.8.2 Kolmogorov Entropy
 - 5.8.3 Autocorrelation Function
 - 5.8.4 Power Spectra
 - 5.9 Ergodicity and Mixing
 - 5.9.1 Ergodicity
 - 5.9.2 Mixing
 - 5.9.3 Baker's Tranformation
 - 5.9.4 Lagrangian Chaos in Fluids
 - 6 Chaos in Dissipative Systems
 - 6.1 Phase-Space Dynamics of Dissipative Systems
 - 6.2 Strange Attractors
 - 6.3 Fractals
 - 6.3.1 Examples of Fractals
 - 6.3.2 Box-Counting Method
 - 6.4 Multi-fractals
 - 6.5 Analysis of Time Series Data
 - 6.6 The Lorenz Attractor
 - 6.6.1 Equilibrium Solutions and Their Stability
 - 6.6.2 Slightly Supercritical Case
 - 6.6.3 Existence of an Attractor
 - 6.6.4 Chaotic Behavior of the Nonlinear Solutions
 - 6.7 Period-Doubling Bifurcations
 - 6.7.1 Difference Equations
 - 6.7.2 The Logistic Map
 - 6.8 Appendix: The Hausdorff-Besicovitch Dimension
 - 6.9 Appendix: The Derivation of Lorenz's Equations
 - 6.10 Appendix: The Derivation of Universality for One-Dimensional Maps
 - 7 Solitons
 - 7.1 Fermi-Pasta-Ulam Recurrence
 - 7.2 Korteweg-deVries Equation
 - 7.3 Waves in an Anharmonic Lattice
 - 7.4 Shallow Water Waves
 - 7.5 Ion-acoustic Waves
 - 7.6 Basic Properties of Korteweg-deVries Equation
 - 7.6.1 Effect of Nonlinearity
 - 7.6.2 Effect of Dispersion
 - 7.6.3 Similarity Transformation
 - 7.6.4 Stokes Waves: Periodic Solutions
 - 7.6.5 Solitary Waves
 - 7.6.6 Peridic Cnoidal Wave Solutions
 - 7.6.7 Interacting Solitary Waves: Hirota's Method
 - 7.7 Inverse-Scattering Transform Method
 - 7.7.1 Time Evolution of the Scattering Data
 - 7.7.2 Gel'fand-Levitan-Marchenko Equation
 - 7.7.3 Direct Scattering Problem
 - 7.7.4 Inverse-Scattering Problem
 - 7.8 Conservation Laws
 - 7.9 Lax Formulation
 - 7.10 B¨acklund Transformations
 - 8 Singularity Analysis and the Painlev´e Property of Dynamical Systems
 - 8.1 The Painlev´e Property
 - 8.2 Singularity Analysis
 - 8.3 The Painlev´e Property for Partial Differential Equations
 - 9 Fractals and Multi-Fractals in Turbulence
 - 9.1 Scale Invariance of the Navier-Stokes Equations and the Kolmogorov (1941) Theory
 - 9.2 The β -model for Turbulence
 - 9.3 The Multi-fractal Models
 - 9.4 The Random-β Model
 - 9.5 The Transition to Dissipation Range
 - 9.6 Critical Phenomena Perspectives on the Turbulence Problem
 - 10 Exercises
 - 11 References
 - 12 Index.
 


