Cargando…

Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics /

The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics for solids. Then the principle of virtual work is utilized to derive the simpler, kinematically linear 3-D theory and to provide the foundation for developing consistent theories of kinematic nonlinearity and lineari...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Byskov, Esben (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Solid Mechanics and Its Applications, 194
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-007-5766-0
003 DE-He213
005 20220120083919.0
007 cr nn 008mamaa
008 130202s2013 ne | s |||| 0|eng d
020 |a 9789400757660  |9 978-94-007-5766-0 
024 7 |a 10.1007/978-94-007-5766-0  |2 doi 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a SCI096000  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.105  |2 23 
100 1 |a Byskov, Esben.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Elementary Continuum Mechanics for Everyone  |h [electronic resource] :  |b With Applications to Structural Mechanics /  |c by Esben Byskov. 
250 |a 1st ed. 2013. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2013. 
300 |a XXX, 593 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Solid Mechanics and Its Applications,  |x 2214-7764 ;  |v 194 
505 0 |a Preface -- Introduction -- I Continuum Mechanics -- II Specialized Continua -- III Beams with Cross-Sections and Plates with Thickness -- IV Buckling -- V Introduction to the Finite Element Method -- VI Mathematical Preliminaries -- Index. 
520 |a The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics for solids. Then the principle of virtual work is utilized to derive the simpler, kinematically linear 3-D theory and to provide the foundation for developing consistent theories of kinematic nonlinearity and linearity for specialized continua, such as beams and plates, and finite element methods for these structures. A formulation in terms of the versatile Budiansky-Hutchinson notation is used as basis for the theories for these structures and structural elements, as well as for an in-depth treatment of structural instability. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Mechanical engineering. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Solid Mechanics. 
650 2 4 |a Mechanical Engineering. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789400757653 
776 0 8 |i Printed edition:  |z 9789400757677 
776 0 8 |i Printed edition:  |z 9789400795587 
830 0 |a Solid Mechanics and Its Applications,  |x 2214-7764 ;  |v 194 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-94-007-5766-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)