Cargando…

Wave Equations in Higher Dimensions

Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dong, Shi-Hai (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-007-1917-0
003 DE-He213
005 20220127104950.0
007 cr nn 008mamaa
008 110707s2011 ne | s |||| 0|eng d
020 |a 9789400719170  |9 978-94-007-1917-0 
024 7 |a 10.1007/978-94-007-1917-0  |2 doi 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
082 0 4 |a 530.12  |2 23 
100 1 |a Dong, Shi-Hai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Wave Equations in Higher Dimensions  |h [electronic resource] /  |c by Shi-Hai Dong. 
250 |a 1st ed. 2011. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2011. 
300 |a XXV, 295 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I (Introduction) -- Part II (Theory). - 2. Special orthogonal groups (Introduction; Abstract groups;Orthogonal group SO(n); Tensor representations of the SO(n); \Gamma matrix groups; Spinor representations of the SO(n); Concluding remarks) -- 3. Rotational symmetry and Schrödinger equation in N-dimensional space (Introduction; Rotation operator; Orbital angular momentum operators; The linear momentum operators;Radial momentum operator; Spherical harmonic polynomials; Schrödinger equation for a two-body system; Concluding remarks) -- 4. Dirac equation in higher dimensions (Introduction; Dirac equation in N+1 dimensions; The radial equation; Application to hydrogen atom; Concluding remarks) -- 5. Klein-Gordon equation in higher dimensions (Introduction; The Radial equation; Application to hydrogen atom; Concluding remarks) -- Part III (Application in Non-relativistic Quantum Mechanics) -- 6. Harmonic oscillator (Introduction; Exact solutions of harmonic oscillator; Recurrence relations for the radioal function; Realization of dynamic group SU(1, 1); Generalization to pseudoharmonic ooscillator; Position and momentum information entropy; Conclusions) -- 7. Coulomb potential (Introduction; Exact solution; Shift operators; Mapping between Coulumb and harmonic oscillator radial functions; Realization of dynamic of dynamic group SU (1, 1); Generalization to Kratzer potential; Concluding remarks) -- 8. Wave function ansatz method (Introduction; Sextic potential; Singular one-fraction power potential; Mixture potential; Non-polynomial potential; Screened Coulomb potential; Morse potential; Conclusions) -- 9. Levinson theorem for Schrödinger equation (Introduction; Scattering states and phase shifts; Bound states; Sturm--Liouville theorem; Levinson theorem; Discussions; Conclusions) -- 10. Generalized hypervirial theorem for Schrödinger equation (Introduction; Generalized Blanchard's and Kramers' recurrence relations; Applications to central potentials; Conclusions) -- 11. Exact quantization rule and Langer modification (Introduction; WKB approximation; Exact quantization rule; Application to trigonometric Rosen-Morse potential; Proper quantization rule; Illustrations of proper quantization rule; Langer modification in D dimensions; Calculations of logarithmic derivatives of wavefunction; Conclusions) -- 12. Schrödinger equation with position-dependent mass (Introduction; Formalism; Applications to harmonic oscillator and Coulomb potential; Conclusions) -- Part IV (Application in Relativistic Quantum Mechanics) -- 13. Dirac equation with Coulomb potential (Introduction; Exact solutions of hydrogen-like atoms; Analysis of eigenvalues; Generalization to the Dirac equation with Coulomb potential plus scalar potential; Concluding remarks) -- 14. Klein-Gordon equation with Coulomb potential (Introduction; Eigenfunctions and eigenvalues; Analysis of eigenvalues; Generalization: Klein-Gordon equation with Coulomb plus scalar potential; Comparison theorem; Conclusions) -- 15. Levinson theorem for Dirac equation (Introduction; Generalization Sturm-Liouville theorem; Number of bound states; Relativistic Levinson theorem; Discussions; Friedel Theorem; Comparison theorem; Conclusions) -- 16. Generalized hypervirial theorem for Dirac equation (Introduction; Relativistic recurrence relation; Diagonal case; Conclusions) -- 17. Kaluza-Klein theory (Introduction; (4+D) -dimensional Kaluza-Klein theories; Paritcle spectrum of Kaluza-Klein theories for ferminions; Warped extra dimensions; Conclusions) -- PART V (Conclusions and Outlooks) -- 18. Conclusions and outlooks -- Appendices -- References -- Index. 
520 |a Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader's disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativistic and relativistic quantum mechanics in terms of the theories presented in Part II. In particular, the Levinson theorem and the generalized hypervirial theorem in higher dimensions, the Schrödinger equation with position-dependent mass and the Kaluza-Klein theory in higher dimensions are investigated. In this context, the dependence of the energy levels on the dimension is shown. Finally, Part V contains conclusions, outlooks and an extensive bibliography. 
650 0 |a Quantum physics. 
650 0 |a Gravitation. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 1 4 |a Quantum Physics. 
650 2 4 |a Classical and Quantum Gravity. 
650 2 4 |a Difference and Functional Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789401782302 
776 0 8 |i Printed edition:  |z 9789400719187 
776 0 8 |i Printed edition:  |z 9789400719163 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-94-007-1917-0  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)