Cargando…

Plate Structures

Plate structures are used in almost every area of engineering, including aerospace and naval architecture, civil engineering, and electronics. These structures have diverse geometries and have to withstand a wide range of loading conditions. This book provides the theoretical foundations of the theo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Birman, Victor (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Solid Mechanics and Its Applications, 178
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Preface
  • Chapter 1: Introduction and Basic Concepts
  •  1.1. Theoretical foundations of theory of plates
  • 1.2 Constitutive relations for composite, isotropic and piezoelectric materials
  • 1.3. Strain-displacement relations for plates and relevant kinematic assumptions
  • 1.4. Stress resultants and stress couples
  • 1.5. Introduction to the Rayleigh-Ritz and Galerkin methods
  • 1.6. Equations of motion and boundary conditions: derivation from the Hamilton principle for a geometrically nonlinear shear deformable plate
  • 1.7. Equations of motion and boundary conditions: derivation from the analysis of an infinitesimal plate element
  • 1.8. An alternative formulation of equations of equilibrium and boundary conditions of thin plates in terms of a stress function
  • 1.9. Effect of temperature on constitutive relations and material constants
  • 1.10. Strength theories
  • 1.11. Outline of a comprehensive plate analysis
  • References
  • Chapter 2: Static Problems in Isotropic Rectangular Plates
  • 2.1. Classical Navier's problem
  • 2.2. Boundary conditions in realistic structures
  • 2.3. Representative analytical solution: Levy's method
  • 2.4. Plates on elastic foundation
  • 2.5. Combined lateral and in-plane loading
  • 2.6. Buckling of rectangular isotropic plates
  • 2.7. Application of the Rayleigh-Ritz method and Galerkin procedure to bending and buckling problems
  • 2.8. Effect of initial imperfections on bending and buckling of rectangular plates2
  • 2.9. Effect of stringers on bending and buckling of plates
  • 2.10. Postbuckling response of plates
  • 2.11. Design philosophy and recommendations
  • References
  • Chapter 3: Static Problems in Isotropic Circular Plates and Plates of Other Shapes
  • 3.1. Governing equations of circular plates
  • 3.2. Axisymmetric bending problems
  • 3.3. Geometrically nonlinear axisymmetric bending problem for a solid annular plate
  • 3.4. Asymmetric problems for circular plates
  • 3.5. In-plane loading and buckling of circular plates
  • 3.6. Bending of plates of non-rectangular and non-circular shapes
  • 3.7. Design philosophy and recommendations
  • References
  • Chapter 4: Dynamic Problems in Isotropic Plates
  • 4.1. Typical problems
  • 4.2. Free vibrations of rectangular isotropic plates
  • 4.3. Forced harmonic vibrations of rectangular isotropic plates
  • 4.4. Non-periodic response (representative example of blast loading)
  • 4.5. Vibrations of reinforced plates
  • 4.6. Large-amplitude vibrations
  • 4.7. Dynamic instability of plates
  • 4.8. Design philosophy and recommendations
  • References
  • Chapter 5: Mechanics of Composite plates
  • 5.1. Basic concepts of thin laminated plates
  • 5.2. Governing equations for thin composite plate
  • 5.3. Strength criteria for laminated composites
  • 5.4. Representative bending problems for a thin composite plate3
  • 5.5. Buckling problems for thin composite plates
  • 5.6. Statics and dynamics of stringer-reinforced composite plates
  • 5.7. Shear-deformable composite plates
  • 5.8. Sandwich plates
  • 5.9. Design philosophy and recommendations
  • References
  • Chapter 6: Thermoelastic Problems in Isotropic and Composite Plates
  • 6.1. Heat transfer problem
  • 6.2. Representative problem: heat transfer in a functionally graded plate subject to a uniform over the surface thermal loading
  • 6.3. Thermal bending and buckling of rectangular isotropic plates
  • 6.4. Thermal bending and buckling problems for rectangular composite and sandwich plates
  • 6.5. Example of thermal problem in applications: composite plates subject to fire
  • 6.6. Design philosophy and recommendations
  • References
  • Chapter 7: Examples of Advanced Applications: Plates with Piezoelectric Sensors and Actuators and Functionally Graded Plates
  • 7.1. Governing equations for shear deformable and thin plates with piezoelectric layers
  • 7.2. Thin plates with piezoelectric sensors and actuators
  • 7.3. Active control of composite plates using piezoelectric "stiffeners-actuators"
  • 7. 4. Effect of temperature on measurements obtained from piezoelectric sensors
  • 7.5. Concept of functionally graded material (FGM) plates
  • 7.6. Thermal problems of FGM plates
  • 7.7. Thermomechanical problems of FGM plates
  • 7.8. Design philosophy and recommendations
  • References
  •  Subject index.