Linear and Nonlinear Control of Small-Scale Unmanned Helicopters
There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified an...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2011.
|
Edición: | 1st ed. 2011. |
Colección: | Intelligent Systems, Control and Automation: Science and Engineering,
45 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1 Introduction
- 1.1 Background Information
- 1.2 The Mathematical Problem .
- 1.3 Controller Designs
- 1.3.1 Linear Controller Design
- 1.3.2 Nonlinear Controller Design
- 1.4 Outline of the Book
- 2 Review of Linear and Nonlinear Controller Designs
- 2.1 Linear Controller Designs
- 2.2 Nonlinear Controller Design
- 2.3 Remarks
- 3 Helicopter Basic Equations of Motion
- 3.1 Helicopter Equations of Motion
- 3.2 Position and Orientation of the Helicopter
- 3.2.1 Helicopter Position Dynamics
- 3.2.2 Helicopter Orientation Dynamics
- 3.3 Complete Helicopter Dynamics
- 3.4 Remarks
- 4 Simplified Rotor Dynamics
- 4.1 Introduction
- 4.2 Blade Motion
- 4.3 Swashplate Mechanism
- 4.4 Fundamental Rotor Aerodynamics
- 4.5 Flapping Equations of Motion
- 4.6 Rotor Tip-Path-Plane Equation
- 4.7 First Order Tip-Path-Plane Equations
- 4.8 Main Rotor Forces and Moments
- 4.9 Remarks
- 5 Frequency Domain System Identification
- 5.1 Mathematical Modeling
- 5.1.1 First Principles Modeling
- 5.1.2 System Identification Modeling
- 5.2 Frequency Domain System Identification
- 5.3 Advantages of the Frequency Domain Identification
- 5.4 Helicopter Identification Challenges
- 5.5 Frequency Response and the Coherence Function
- 5.6 The CIFER c Package
- 5.7 Time History Data and Excitation Inputs
- 5.8 Linearization of the Equations of Motion
- 5.9 Stability and Control Derivatives
- 5.10 Model Identification
- 5.10.1 Experimental Platform
- 5.10.2 Parametrized State Space Model
- 5.10.3 Identification Setup
- 5.10.4 Time Domain Validation
- 5.11 Remarks
- 6 Linear Tracking Controller Design for Small-Scale Unmanned Helicopters
- 6.1 Helicopter Linear Model
- 6.2 Linear Controller Design Outline
- 6.3 Decomposing the System
- 6.4 Velocity and Heading Tracking Controller Design
- 6.4.1 Lateral-Longitudinal Dynamics
- 6.4.2 Yaw-Heave Dynamics
- 6.4.3 Stability of the Complete System Error Dynamics
- 6.5 Position and Heading Tracking
- 6.6 PID Controller Design
- 6.7 Experimental Results
- 6.8 Remarks
- 7 Nonlinear Tracking Controller Design for Unmanned Helicopters
- 7.1 Introduction
- 7.2 Helicopter Nonlinear Model
- 7.2.1 Rigid Body Dynamics
- 7.2.2 ExternalWrench Model
- 7.2.3 Complete Rigid Body Dynamics
- 7.3 Translational Error Dynamics
- 7.4 Attitude Error Dynamics
- 7.4.1 Yaw Error Dynamics
- 7.4.2 Orientation Error Dynamics
- 7.4.3 Angular Velocity Error Dynamics
- 7.5 Stability of the Attitude Error Dynamics
- 7.6 Stability of the Translational Error Dynamics
- 7.7 Numeric Simulation Results
- 7.8 Remarks
- 8 Time Domain Parameter Estimation and Applied Discrete Nonlinear Control for Small-Scale Unmanned Helicopters
- 8.1 Introduction
- 8.2 Discrete System Dynamics
- 8.3 Discrete Backstepping Algorithm
- 8.3.1 Angular Velocity Dynamics
- 8.3.2 Translational Dynamics
- 8.3.3 Yaw Dynamics
- 8.4 Parameter Estimation Using Recursive Least Squares
- 8.5 Parametric Model
- 8.6 Experimental Results
- 8.6.1 Time History Data and Excitation Inputs
- 8.6.2 Validation
- 8.6.3 Control Design
- 8.7 Remarks
- 9 Time Domain System Identification for Small-Scale Unmanned Helicopters Using Fuzzy Models
- 9.1 Introduction
- 9.2 Takagi-Sugeno Fuzzy Models
- 9.3 Proposed Takagi-Sugeno System for Helicopters
- 9.4 Experimental Results
- 9.4.1 Tunning of the Membership Function Parameters
- 9.4.2 Validation
- 10 Comparison Studies
- 10.1 Summary of the Controller Designs
- 10.2 Experimental Results
- 10.3 First Maneuver: Forward Flight
- 10.4 Second Maneuver: Aggressive Forward Flight
- 10.5 Third Maneuver: 8 Shaped Trajectory
- 10.6 Fourth Maneuver: Pirouette Trajectory
- 10.7 Remarks
- 11 Epilogue
- 11.1 Introduction
- 11.2 Advantages and Novelties of the Designs
- 11.3 Testing and Implementation
- 11.4 Remarks
- A Fundamentals of Backstepping Control
- A.1 Integrator Backstepping
- A.2 Example of a Recursive Backstepping Design
- References.