Cargando…

Dual Tableaux: Foundations, Methodology, Case Studies

The book presents logical foundations of dual tableaux together with a number of their applications both to logics traditionally dealt with in mathematics and philosophy (such as modal, intuitionistic, relevant, and many-valued logics) and to various applied theories of computational logic (such as...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Orlowska, Ewa (Autor), Golińska Pilarek, Joanna (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Trends in Logic, Studia Logica Library, 33
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-007-0005-5
003 DE-He213
005 20220119052727.0
007 cr nn 008mamaa
008 120105s2011 ne | s |||| 0|eng d
020 |a 9789400700055  |9 978-94-007-0005-5 
024 7 |a 10.1007/978-94-007-0005-5  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBCD  |2 bicssc 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBCD  |2 thema 
072 7 |a PBC  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Orlowska, Ewa.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dual Tableaux: Foundations, Methodology, Case Studies  |h [electronic resource] /  |c by Ewa Orlowska, Joanna Golińska Pilarek. 
250 |a 1st ed. 2011. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2011. 
300 |a XVI, 523 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Trends in Logic, Studia Logica Library,  |x 2212-7313 ;  |v 33 
505 0 |a 1. Dual Tableau for Classical First-Order Logic -- 2. Dual Tableaux for Logics of Classical Algebras of Binary -- 3. Theories of Point Relations and Relational Model Checking -- 4. Dual Tableaux for Peirce Algebras -- 5. Dual Tableaux for Fork Algebras -- 6. Dual Tableaux for Relational Databases -- Part III. Relational Reasoning in Traditional Non-classical Logics -- 7. Dual Tableaux for Classical Modal Logics -- 8. Dual Tableaux for Some Logics Based on Intuitionism -- 9. Dual Tableaux for Relevant Logics -- 10. Dual Tableaux for Many-valued Logics -- Part IV. Relational Reasoning in Logics of Information and Data -- Analysis -- 11. Dual Tableaux for Information Logics of Plain Frames -- 12. Dual Tableaux for Information Logics of Relative Frames -- 13. Dual Tableau for Formal Concept Analysis -- 14. Dual Tableau for a Fuzzy Logic -- 15. Dual Tableaux for Logics of Order of Magnitude Reasoning -- Part V. Relational Reasoning about Time, Space, and Action -- 16. Dual Tableaux for Temporal Logics -- 17. Dual Tableaux for Interval Temporal Logics -- 18. Dual Tableaux for Spatial Reasoning -- 19. Dual Tableaux for Logics of Programs -- Part VI. Beyond Relational Theories -- 20. Dual Tableaux for Threshold Logics -- 21. Signed Dual Tableau for G¨odel-Dummett Logic -- 22. Dual Tableaux for First-Order Post Logics -- 23. Dual Tableau for Propositional Logic with Identity -- 24. Dual Tableaux for Logics of Conditional Decisions -- 25. Methodological Principles of Dual Tableaux -- References -- Index. 
520 |a The book presents logical foundations of dual tableaux together with a number of their applications both to logics traditionally dealt with in mathematics and philosophy (such as modal, intuitionistic, relevant, and many-valued logics) and to various applied theories of computational logic (such as temporal reasoning, spatial reasoning, fuzzy-set-based reasoning, rough-set-based reasoning, order-of magnitude reasoning, reasoning about programs, threshold logics, logics of conditional decisions). The distinguishing feature of most of these applications is that the corresponding dual tableaux are built in a relational language which provides useful means of presentation of the theories. In this way modularity of dual tableaux is ensured. We do not need to develop and implement each dual tableau from scratch, we should only extend the relational core common to many theories with the rules specific for a particular theory. 
650 0 |a Mathematical logic. 
650 0 |a Machine theory. 
650 0 |a Logic. 
650 1 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Formal Languages and Automata Theory. 
650 2 4 |a Logic. 
700 1 |a Golińska Pilarek, Joanna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789400734364 
776 0 8 |i Printed edition:  |z 9789400700048 
776 0 8 |i Printed edition:  |z 9789400700062 
830 0 |a Trends in Logic, Studia Logica Library,  |x 2212-7313 ;  |v 33 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-94-007-0005-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)