Cargando…

Diophantine Approximation and Dirichlet Series

This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Queffelec, Herve (Autor), Queffelec, Martine (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gurgaon : Hindustan Book Agency : Imprint: Hindustan Book Agency, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-93-86279-61-3
003 DE-He213
005 20220113053928.0
007 cr nn 008mamaa
008 170720s2013 ii | s |||| 0|eng d
020 |a 9789386279613  |9 978-93-86279-61-3 
024 7 |a 10.1007/978-93-86279-61-3  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Queffelec, Herve.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Diophantine Approximation and Dirichlet Series  |h [electronic resource] /  |c by Herve Queffelec, Martine Queffelec. 
250 |a 1st ed. 2013. 
264 1 |a Gurgaon :  |b Hindustan Book Agency :  |b Imprint: Hindustan Book Agency,  |c 2013. 
300 |a 244 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of analytic functions in a half-plane. Finally, chapter seven presents the Bagchi-Voronin universality theorems, for the zeta function, and r-tuples of L functions. The proofs, which mix hilbertian geometry, complex and harmonic analysis, and ergodic theory, are a very good illustration of the material studied earlier. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
700 1 |a Queffelec, Martine.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789380250533 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-93-86279-61-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)