Cargando…

Basic ergodic theory

This is an introductory book on Ergodic Theory. The presentation has a slow pace and the book can be read by any person with a background in basic measure theory and metric topology. A new feature of the book is that the basic topics of Ergodic Theory such as the Poincare recurrence lemma, induced a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nadkarni, M. G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gurgaon : Hindustan Book Agency : Imprint: Hindustan Book Agency, 2013.
Edición:3rd ed. 2013.
Colección:Texts and Readings in Mathematics ; 6
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-93-86279-53-8
003 DE-He213
005 20220118053725.0
007 cr nn 008mamaa
008 170720s2013 ii | s |||| 0|eng d
020 |a 9789386279538  |9 978-93-86279-53-8 
024 7 |a 10.1007/978-93-86279-53-8  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Nadkarni, M. G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Basic ergodic theory  |h [electronic resource] /  |c by M. G. Nadkarni. 
250 |a 3rd ed. 2013. 
264 1 |a Gurgaon :  |b Hindustan Book Agency :  |b Imprint: Hindustan Book Agency,  |c 2013. 
300 |a 196 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Readings in Mathematics ;  |v 6 
520 |a This is an introductory book on Ergodic Theory. The presentation has a slow pace and the book can be read by any person with a background in basic measure theory and metric topology. A new feature of the book is that the basic topics of Ergodic Theory such as the Poincare recurrence lemma, induced automorphisms and Kakutani towers, compressibility and E. Hopf's theorem, the theorem of Ambrose on representation of flows are treated at the descriptive set-theoretic level before their measure-theoretic or topological versions are presented. In addition, topics around the Glimm-Effros theorem are discussed. In the third edition a chapter entitled 'Additional Topics' has been added. It gives Liouville's Theorem on the existence of invariant measure, entropy theory leading up to Kolmogorov-Sinai Theorem, and the topological dynamics proof of van der Waerden's theorem on arithmetical progressions. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789380250434 
830 0 |a Texts and Readings in Mathematics ;  |v 6 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-93-86279-53-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)