Cargando…

Arithmetical Aspects of the Large Sieve Inequality

This book is an elaboration of a series of lectures given at the Harish-Chandra Research Institute. The reader will be taken through a journey on the arithmetical sides of the large sieve inequality when applied to the Farey dissection. This will reveal connections between this inequality, the Selbe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ramaré, Oliver (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Ramana, D. S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gurgaon : Hindustan Book Agency : Imprint: Hindustan Book Agency, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-93-86279-40-8
003 DE-He213
005 20220116121752.0
007 cr nn 008mamaa
008 170720s2009 ii | s |||| 0|eng d
020 |a 9789386279408  |9 978-93-86279-40-8 
024 7 |a 10.1007/978-93-86279-40-8  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Ramaré, Oliver.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Arithmetical Aspects of the Large Sieve Inequality  |h [electronic resource] /  |c by Oliver Ramaré ; edited by D. S. Ramana. 
250 |a 1st ed. 2009. 
264 1 |a Gurgaon :  |b Hindustan Book Agency :  |b Imprint: Hindustan Book Agency,  |c 2009. 
300 |a 212 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This book is an elaboration of a series of lectures given at the Harish-Chandra Research Institute. The reader will be taken through a journey on the arithmetical sides of the large sieve inequality when applied to the Farey dissection. This will reveal connections between this inequality, the Selberg sieve and other less used notions like pseudo-characters and the $\Lambda_Q$-function, as well as extend these theories. One of the leading themes of these notes is the notion of so-called\emph{local models} that throws a unifying light on the subject. As examples and applications, the authors present, among other things, an extension of the Brun-Tichmarsh Theorem, a new proof of Linnik's Theorem on quadratic residues and an equally novel one of the Vinogradov three primes Theorem; the authors also consider the problem of small prime gaps, of sums of two squarefree numbers and several other ones, some of them being new, like a sharp upper bound for the number of twin primes $p$ that are such that $p+1$ is squarefree. In the end the problem of equality in the large sieve inequality is considered and several results in this area are also proved. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
700 1 |a Ramana, D. S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788185931906 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-93-86279-40-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)