Cargando…

Linear-Scaling Techniques in Computational Chemistry and Physics Methods and Applications /

Computational chemistry methods have become increasingly important in recent years, as manifested by their rapidly extending applications in a large number of diverse fields. The ever-increasing size of the systems one wants to study leads to the development and application of methods, which provide...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Zaleśny, Robert (Editor ), Papadopoulos, Manthos G. (Editor ), Mezey, Paul G. (Editor ), Leszczynski, Jerzy (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Challenges and Advances in Computational Chemistry and Physics, 13
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Including chapters on: Linear scaling second order Møller Plesset perturbation theory
  • Divide-and-conquer approaches to quantum chemistry: Theory and implementation
  • Mathematical formulation of the fragment molecular orbital method
  • Linear scaling for metallic systems by the Korringa-Kohn-Rostoker multiple-scattering method
  • Density matrix methods in linear scaling electronic structure theory
  • Methods for Hartree-Fock and density functional theory electronic structure calculations with linearly scaling processor time and memory usage
  • Some thoughts on the scope of the linear scaling self-consistent field electrnic structure methods
  • The linear scaling semiempirical localSCF method and the finite LMO approximation
  • Molecular Tailoring: an Art of the Possible for Ab Initio Treatment of Large Molecules and Molecular Clusters
  • Local approximations for an efficient treatment of electron correlation and electron excitations in molecules.