Cargando…

Turbulence Nature and the Inverse Problem

Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pyatnitsky, L. N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Fluid Mechanics and Its Applications, 89
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-90-481-2251-6
003 DE-He213
005 20220114232031.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 |a 9789048122516  |9 978-90-481-2251-6 
024 7 |a 10.1007/978-90-481-2251-6  |2 doi 
050 4 |a QC120-168.85 
050 4 |a QA808.2 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
072 7 |a PHD  |2 thema 
082 0 4 |a 531  |2 23 
100 1 |a Pyatnitsky, L. N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Turbulence Nature and the Inverse Problem  |h [electronic resource] /  |c by L. N. Pyatnitsky. 
250 |a 1st ed. 2009. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2009. 
300 |a XVI, 197 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fluid Mechanics and Its Applications,  |x 2215-0056 ;  |v 89 
505 0 |a The turbulence problem -- Fluid motion -- Distribution of parameters in viscous flow -- Perturbations in viscous flow -- Perturbation in channels -- Spatio-temporal field of perturbations in channels -- Evolution of velocity oscillation field -- Experimental substantiation of turbulence wave model -- Transition from normal combustion to detonation -- An inverse problem of turbulence. 
520 |a Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscillations of hydrodynamic parameters. Superposition of such packets forms a spatio-temporal field of oscillations fading as 1/r. This implies a mechanism of the turbulence. Vorticity existing in the boundary layer does not penetrate in itself into potential main stream. But the wave leaving the boundary layer carries away some part of fluid along with frozen-in vorticity. The vorticity eddies form another field of oscillations fading as 1/r2. This implies a second mechanism of turbulence. Thereupon the oscillation spatio-temporal field and its randomization development are easy computed. Also, normal burning transition into detonation is explained, and the turbulence inverse problem is set and solved as applied to plasma channels created by laser Besselian beams. 
650 0 |a Mechanics. 
650 0 |a Acoustics. 
650 0 |a Computer science. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Lasers. 
650 0 |a Engineering. 
650 1 4 |a Classical Mechanics. 
650 2 4 |a Acoustics. 
650 2 4 |a Models of Computation. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Laser. 
650 2 4 |a Technology and Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048184804 
776 0 8 |i Printed edition:  |z 9789048122752 
776 0 8 |i Printed edition:  |z 9789048122509 
830 0 |a Fluid Mechanics and Its Applications,  |x 2215-0056 ;  |v 89 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-90-481-2251-6  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)