Cargando…

Rigid Germs, the Valuative Tree, and Applications to Kato Varieties

This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical poin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ruggiero, Matteo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2015.
Edición:1st ed. 2015.
Colección:Theses (Scuola Normale Superiore), 20
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-88-7642-559-2
003 DE-He213
005 20220120150113.0
007 cr nn 008mamaa
008 160428s2015 it | s |||| 0|eng d
020 |a 9788876425592  |9 978-88-7642-559-2 
024 7 |a 10.1007/978-88-7642-559-2  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Ruggiero, Matteo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rigid Germs, the Valuative Tree, and Applications to Kato Varieties  |h [electronic resource] /  |c by Matteo Ruggiero. 
250 |a 1st ed. 2015. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2015. 
300 |a Approx. 200 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theses (Scuola Normale Superiore),  |x 2532-1668 ;  |v 20 
505 0 |a Introduction.-1.Background -- 2.Dynamics in 2D -- 3.Rigid germs in higher dimension -- 4 Construction of non-Kahler 3-folds -- References -- Index. 
520 |a This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical points is still not completely understood, in dimension 2 or higher, due to the richness of the geometry of the critical set for all iterates. In dimension 2, the study of the dynamics induced on a suitable functional space (the valuative tree) allows a classification of such maps up to birational conjugacy, reducing the problem to the special class of rigid germs, where the geometry of the critical set is simple. In some cases, from such dynamical data one can construct special compact complex surfaces, called Kato surfaces, related to some conjectures in complex geometry. 
650 0 |a Dynamical systems. 
650 0 |a Algebraic geometry. 
650 0 |a Algebraic topology. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788876425585 
830 0 |a Theses (Scuola Normale Superiore),  |x 2532-1668 ;  |v 20 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-88-7642-559-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)