Cargando…

Rigid Germs, the Valuative Tree, and Applications to Kato Varieties

This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical poin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ruggiero, Matteo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2015.
Edición:1st ed. 2015.
Colección:Theses (Scuola Normale Superiore), 20
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical points is still not completely understood, in dimension 2 or higher, due to the richness of the geometry of the critical set for all iterates. In dimension 2, the study of the dynamics induced on a suitable functional space (the valuative tree) allows a classification of such maps up to birational conjugacy, reducing the problem to the special class of rigid germs, where the geometry of the critical set is simple. In some cases, from such dynamical data one can construct special compact complex surfaces, called Kato surfaces, related to some conjectures in complex geometry.
Descripción Física:Approx. 200 p. online resource.
ISBN:9788876425592
ISSN:2532-1668 ;