Cargando…

Introductory Notes on Valuation Rings and Function Fields in One Variable

The book deals with the (elementary and introductory) theory of valuation rings. As explained in the introduction, this represents a useful and important viewpoint in algebraic geometry, especially concerning the theory of algebraic curves and their function fields. The correspondences of this with...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Scognamillo, Renata (Autor), Zannier, Umberto (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2014.
Edición:1st ed. 2014.
Colección:Lecture Notes (Scuola Normale Superiore), 14
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-88-7642-501-1
003 DE-He213
005 20220406150727.0
007 cr nn 008mamaa
008 140701s2014 it | s |||| 0|eng d
020 |a 9788876425011  |9 978-88-7642-501-1 
024 7 |a 10.1007/978-88-7642-501-1  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Scognamillo, Renata.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introductory Notes on Valuation Rings and Function Fields in One Variable  |h [electronic resource] /  |c by Renata Scognamillo, Umberto Zannier. 
250 |a 1st ed. 2014. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2014. 
300 |a VIII, 119 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes (Scuola Normale Superiore),  |x 2946-2983 ;  |v 14 
505 0 |a Generalities on function fields of one variable -- Valuation rings -- Completions -- Appendices on Hilbert's Nullstellensatz, Puiseux series, Dedekind domains. 
520 |a The book deals with the (elementary and introductory) theory of valuation rings. As explained in the introduction, this represents a useful and important viewpoint in algebraic geometry, especially concerning the theory of algebraic curves and their function fields. The correspondences of this with other viewpoints (e.g. of geometrical or topological nature) are often indicated, also to provide motivations and intuition for many results. Links with arithmetic are also often indicated. There are three appendices, concerning Hilbert's Nullstellensatz (for which several proofs are provided), Puiseux series and Dedekind domains. There are also several exercises, often accompanied by hints, which sometimes develop further results not included in full for brevity reasons. 
650 0 |a Algebra. 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 1 4 |a Algebra. 
650 2 4 |a Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Zannier, Umberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788876425004 
830 0 |a Lecture Notes (Scuola Normale Superiore),  |x 2946-2983 ;  |v 14 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-88-7642-501-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)