Cargando…

An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs

This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regula...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Giaquinta, Mariano (Autor), Martinazzi, Luca (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2012.
Edición:2nd ed. 2012.
Colección:Lecture Notes (Scuola Normale Superiore),
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-88-7642-443-4
003 DE-He213
005 20220406160608.0
007 cr nn 008mamaa
008 130730s2012 it | s |||| 0|eng d
020 |a 9788876424434  |9 978-88-7642-443-4 
024 7 |a 10.1007/978-88-7642-443-4  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Giaquinta, Mariano.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs  |h [electronic resource] /  |c by Mariano Giaquinta, Luca Martinazzi. 
250 |a 2nd ed. 2012. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2012. 
300 |a XIII, 370 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes (Scuola Normale Superiore),  |x 2946-2983 
505 0 |a 1 Harmonic functions -- 2 Direct methods -- 3 Hilbert space methods -- 4 L2-regularity: the Caccioppoli inequality -- 5 Schauder estimates -- 6 Some real analysis -- 7 Lp-theory -- 8 The regularity problem in the scalar case -- 9 Partial regularity in the vector-valued case -- 10 Harmonic maps -- 11 A survey of minimal graphs. 
520 |a This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and Lp-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the Lp theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes. 
650 0 |a Differential equations. 
650 1 4 |a Differential Equations. 
700 1 |a Martinazzi, Luca.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788876424427 
830 0 |a Lecture Notes (Scuola Normale Superiore),  |x 2946-2983 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-88-7642-443-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)