Cargando…

Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations

The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are descri...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bellettini, Giovanni (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes (Scuola Normale Superiore), 12
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-88-7642-429-8
003 DE-He213
005 20220406154614.0
007 cr nn 008mamaa
008 140513s2013 it | s |||| 0|eng d
020 |a 9788876424298  |9 978-88-7642-429-8 
024 7 |a 10.1007/978-88-7642-429-8  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Bellettini, Giovanni.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations  |h [electronic resource] /  |c by Giovanni Bellettini. 
250 |a 1st ed. 2013. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2013. 
300 |a Approx. 350 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes (Scuola Normale Superiore),  |x 2946-2983 ;  |v 12 
505 0 |a Signed distance from a smooth boundary -- Mean curvature vector and second fundamental form -- First variations of volume integrals and of the perimeter -- Smooth mean curvature flows -- Huisken's monotonicity formula -- Inclusion principle. Local well posedness: the approach of Evans-Spruck -- Grayson's example -- De Giorgi's barriers -- Inner and outer regularizations -- An example of fattening -- Ilmanen's interposition lemma -- The avoidance principle -- Comparison between barriers and a generalized evolution -- Barriers and level set evolution -- Parabolic singular perturbations: formal matched asymptotics, convergence and error estimate. 
520 |a The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen-Cahn (or Ginsburg-Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems. 
650 0 |a Geometry. 
650 1 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788876424281 
830 0 |a Lecture Notes (Scuola Normale Superiore),  |x 2946-2983 ;  |v 12 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-88-7642-429-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)