Cargando…

Structured Matrix Based Methods for Approximate Polynomial GCD

Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the poly...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Boito, Paola (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2011.
Edición:1st ed. 2011.
Colección:Theses (Scuola Normale Superiore), 15
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-88-7642-381-9
003 DE-He213
005 20220118232626.0
007 cr nn 008mamaa
008 120116s2011 it | s |||| 0|eng d
020 |a 9788876423819  |9 978-88-7642-381-9 
024 7 |a 10.1007/978-88-7642-381-9  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Boito, Paola.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Structured Matrix Based Methods for Approximate Polynomial GCD  |h [electronic resource] /  |c by Paola Boito. 
250 |a 1st ed. 2011. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2011. 
300 |a 250 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theses (Scuola Normale Superiore),  |x 2532-1668 ;  |v 15 
505 0 |a i. Introduction -- ii. Notation -- 1. Approximate polynomial GCD -- 2. Structured and resultant matrices -- 3. The Euclidean algorithm -- 4. Matrix factorization and approximate GCDs -- 5. Optimization approach -- 6. New factorization-based methods -- 7. A fast GCD algorithm -- 8. Numerical tests -- 9. Generalizations and further work -- 10. Appendix A: Distances and norms -- 11. Appendix B: Special matrices -- 12. Bibliography -- 13. Index. 
520 |a Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree. . 
650 0 |a Algebra. 
650 1 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788876423802 
830 0 |a Theses (Scuola Normale Superiore),  |x 2532-1668 ;  |v 15 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-88-7642-381-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)