Cargando…

Selected Aspects of Fractional Brownian Motion

Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nourdin, Ivan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Milano : Springer Milan : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-88-470-2823-4
003 DE-He213
005 20220126155257.0
007 cr nn 008mamaa
008 130125s2012 it | s |||| 0|eng d
020 |a 9788847028234  |9 978-88-470-2823-4 
024 7 |a 10.1007/978-88-470-2823-4  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Nourdin, Ivan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Selected Aspects of Fractional Brownian Motion  |h [electronic resource] /  |c by Ivan Nourdin. 
250 |a 1st ed. 2012. 
264 1 |a Milano :  |b Springer Milan :  |b Imprint: Springer,  |c 2012. 
300 |a X, 122 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics,  |x 2039-148X 
505 0 |a 1. Preliminaries -- 2. Fractional Brownian motion -- 3. Integration with respect to fractional Brownian motion -- 4. Supremum of the fractional Brownian motion -- 5. Malliavin calculus in a nutshell -- 6. Central limit theorem on the Wiener space -- 7. Weak convergence of partial sums of stationary sequences -- 8. Non-commutative fractional Brownian motion. 
520 |a Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory property which is in sharp contrast with martingales and Markov processes. FBm has become a popular choice for applications where classical processes cannot model these non-trivial properties; for instance long memory, which is also known as persistence, is of fundamental importance for financial data and in internet traffic. The mathematical theory of fBm is currently being developed vigorously by a number of stochastic analysts, in various directions, using complementary and sometimes competing tools. This book is concerned with several aspects of fBm, including the stochastic integration with respect to it, the study of its supremum and its appearance as limit of partial sums involving stationary sequences, to name but a few. The book is addressed to researchers and graduate students in probability and mathematical statistics. With very few exceptions (where precise references are given), every stated result is proved. 
650 0 |a Probabilities. 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788847028227 
776 0 8 |i Printed edition:  |z 9788847028241 
776 0 8 |i Printed edition:  |z 9788847058491 
830 0 |a Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics,  |x 2039-148X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-88-470-2823-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)